Экспоненциал тэгш бус байдлыг хамгийн бага зэрэгтэй шийдвэрлэх арга. Экспоненциал тэгшитгэл ба тэгш бус байдал. Экспоненциал функц гэж юу вэ

Энэ хичээлээр бид янз бүрийн экспоненциал тэгш бус байдлыг харж, хамгийн энгийн экспоненциал тэгш бус байдлыг шийдвэрлэх арга техник дээр үндэслэн тэдгээрийг хэрхэн шийдвэрлэх талаар сурах болно.

1. Экспоненциал функцийн тодорхойлолт ба шинж чанарууд

Экспоненциал функцийн тодорхойлолт ба үндсэн шинж чанарыг эргэн санацгаая. Бүх экспоненциал тэгшитгэл ба тэгш бус байдлын шийдэл нь эдгээр шинж чанарууд дээр суурилдаг.

Экспоненциал функцхэлбэрийн функц бөгөөд суурь нь зэрэг, энд x нь бие даасан хувьсагч, аргумент; y нь хамааралтай хувьсагч, функц юм.

Цагаан будаа. 1. Экспоненциал функцийн график

График нь нэгээс их, нэгээс бага боловч тэгээс их суурьтай экспоненциал функцийг харуулсан өсөлт ба бууралтыг харуулж байна.

Хоёр муруй хоёулаа (0;1) цэгээр дамждаг.

Экспоненциал функцийн шинж чанарууд:

Хамрах хүрээ: ;

Утгын хүрээ: ;

Функц нь монотон, нэмэгдэх тусам буурдаг.

Монотон функц нь нэг аргументын утгыг өгөгдсөн утга тус бүрийг авдаг.

Аргумент нь хасахаас нэмэх хязгаар хүртэл нэмэгдэхэд функц нь тэгээс нэмэх хязгаар хүртэл нэмэгдэхэд, өөрөөр хэлбэл аргументийн өгөгдсөн утгуудын хувьд бид монотон нэмэгдэж буй функцтэй болно (). Үүний эсрэгээр, аргумент хасахаас нэмэх хязгаар хүртэл нэмэгдэхэд функц нь хязгааргүйгээс тэг хүртэл буурдаг, өөрөөр хэлбэл аргументийн өгөгдсөн утгуудын хувьд бид монотон буурах функцтэй байна ().

2. Хамгийн энгийн экспоненциал тэгш бус байдал, шийдлийн арга, жишээ

Дээр дурдсан зүйлс дээр үндэслэн бид энгийн экспоненциал тэгш бус байдлыг шийдвэрлэх аргыг танилцуулж байна.

Тэгш бус байдлыг шийдвэрлэх арга зүй:

Зэрэглэлийн суурийг тэнцүүлэх;

Тэгш бус байдлын тэмдгийг хадгалах буюу өөрчлөх замаар үзүүлэлтүүдийг харьцуул.

Нарийн төвөгтэй экспоненциал тэгш бус байдлын шийдэл нь тэдгээрийг хамгийн энгийн экспоненциал тэгш бус байдал болгон бууруулахад оршино.

Зэрэглэлийн суурь нь нэгээс их байгаа нь тэгш бус байдлын тэмдэг хадгалагдана гэсэн үг юм.

Өөрчилье баруун талзэрэглэлийн шинж чанарын дагуу:

Зэрэглэлийн суурь нь нэгээс бага бол тэгш бус байдлын тэмдгийг урвуу болгоно.

Квадрат тэгш бус байдлыг шийдэхийн тулд бид тохирох квадрат тэгшитгэлийг шийднэ.

Виетийн теоремыг ашиглан бид үндсийг олно.

Параболагийн мөчрүүд дээшээ чиглэсэн байдаг.

Тиймээс бид тэгш бус байдлын шийдэлтэй байна:

Баруун талыг 0-ийн экспоненттай хүч болгон төлөөлж болно гэдгийг таахад хялбар байдаг.

Зэрэглэлийн суурь нь нэгээс их, тэгш бус байдлын тэмдэг өөрчлөгдөхгүй, бид дараахь зүйлийг авна.

Ийм тэгш бус байдлыг шийдвэрлэх техникийг эргэн санацгаая.

Бутархай-рационал функцийг авч үзье.

Бид тодорхойлолтын домэйныг олдог:

Функцийн үндсийг олох нь:

Функц нь нэг үндэстэй,

Бид тогтмол тэмдгийн интервалуудыг сонгож, интервал бүр дээр функцийн тэмдгүүдийг тодорхойлно.

Цагаан будаа. 2. Тэмдгийн тогтмол байдлын интервалууд

Ингээд бид хариултаа авлаа.

Хариулт:

3. Стандарт экспоненциал тэгш бус байдлыг шийдвэрлэх

-тэй тэгш бус байдлыг авч үзье ижил үзүүлэлтүүд, гэхдээ өөр өөр шалтгаанаар.

Экспоненциал функцийн шинж чанаруудын нэг нь аргументийн аль ч утгын хувьд эерэг утгыг авдаг бөгөөд энэ нь экспоненциал функцэд хуваагдаж болно гэсэн үг юм. Өгөгдсөн тэгш бус байдлыг баруун талд нь хуваая:

Зэрэглэлийн суурь нь нэгээс их, тэгш бус байдлын тэмдэг хадгалагдана.

Үүний шийдлийг тайлбарлая:

Зураг 6.3-т функцийн графикууд болон . Мэдээжийн хэрэг, аргумент нь тэгээс их байх үед функцийн график өндөр, энэ функц илүү том байх болно. Аргументын утгууд сөрөг байвал функц буурч, бага байна. Хэрэв аргумент нь тэнцүү бол функцууд нь тэнцүү бөгөөд энэ цэг нь мөн өгөгдсөн тэгш бус байдлын шийдэл болно гэсэн үг юм.

Цагаан будаа. 3. Зураг жишээ 4

Өгөгдсөн тэгш бус байдлыг зэрэглэлийн шинж чанарын дагуу хувиргацгаая.

Энд зарим ижил төстэй нэр томъёо байна:

Хоёр хэсгийг дараахь байдлаар хуваацгаая.

Одоо бид жишээ 4-тэй адил шийдлийг үргэлжлүүлж, хоёр хэсгийг дараахь байдлаар хуваана.

Зэрэглэлийн суурь нь нэгээс их бол тэгш бус байдлын тэмдэг хэвээр байна:

4. Экспоненциал тэгш бус байдлын график шийдэл

Жишээ 6 - Тэгш бус байдлыг графикаар шийд:

Зүүн ба баруун талд байгаа функцуудыг авч үзээд тус бүрд нь график байгуулъя.

Функц нь экспоненциал бөгөөд тодорхойлолтын бүх талбарт, өөрөөр хэлбэл аргументийн бүх бодит утгуудын хувьд нэмэгддэг.

Функц нь шугаман бөгөөд түүний бүх тодорхойлолтын хүрээнд, өөрөөр хэлбэл аргументийн бүх бодит утгуудын хувьд буурдаг.

Хэрэв эдгээр функцүүд огтлолцох юм бол систем нь шийдэлтэй бол ийм шийдэл нь өвөрмөц бөгөөд таахад хялбар байдаг. Үүнийг хийхийн тулд бид бүхэл тоон дээр давтана ()

Энэ системийн үндэс нь:

Ийнхүү функцүүдийн графикууд нэгтэй тэнцүү аргументтай цэг дээр огтлолцдог.

Одоо бид хариулт авах хэрэгтэй байна. Өгөгдсөн тэгш бус байдлын утга нь илтгэгч нь түүнээс их буюу тэнцүү байх ёстой шугаман функц, өөрөөр хэлбэл, илүү өндөр байх эсвэл түүнтэй давхцах. Хариулт нь тодорхой байна: (Зураг 6.4)

Цагаан будаа. 4. Зураг жишээ 6

Тиймээс бид янз бүрийн стандарт экспоненциал тэгш бус байдлын шийдлийг авч үзсэн. Дараа нь бид илүү төвөгтэй экспоненциал тэгш бус байдлыг авч үзэх болно.

Лавлагаа

Мордкович A. G. Алгебр ба зарчим математик шинжилгээ. - М .: Мнемосине. Muravin G. K., Muravin O. V. Алгебр ба математик анализын эхлэл. - М .: тоодог. Колмогоров А.Н., Абрамов А.М., Дудницын Ю. Алгебр ба математикийн анализын эхлэл. - М .: Гэгээрэл.

Математик. md. Математик - давталт. com. Диффур. Кемсү. ru.

Гэрийн даалгавар

1. Алгебр ба анализын эхлэл, 10-11-р анги (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990, No 472, 473;

2. Тэгш бус байдлыг шийд:

3. Тэгш бус байдлыг шийд.

Экспоненциал тэгш бус байдал нь нарийн төвөгтэй, ойлгомжгүй зүйл гэж олон хүмүүс боддог. Тэдгээрийг шийдэж сурах нь зөвхөн Сонгогдсон хүмүүсийн л ойлгох чадвартай бараг л агуу урлаг юм...

Бүрэн утгагүй зүйл! Экспоненциал тэгш бус байдал нь хялбар байдаг. Мөн тэд үргэлж энгийн байдлаар шийдэгддэг. За, бараг үргэлж. :)

Өнөөдөр бид энэ сэдвийг дотор болон гадна талаас нь авч үзэх болно. Сургуулийн математикийн энэ хэсгийг дөнгөж ойлгож эхэлж буй хүмүүст энэ хичээл маш их хэрэг болно. -ээс эхэлье энгийн даалгаваруудмөн бид илүү төвөгтэй асуудлууд руу шилжих болно. Өнөөдөр ямар ч хэцүү ажил байхгүй, гэхдээ таны унших гэж байгаа зүйл бүх төрлийн шалгалт, шалгалтын ихэнх тэгш бус байдлыг шийдвэрлэхэд хангалттай байх болно. бие даасан ажил. Мөн таны энэ шалгалтанд.

Ердийнх шигээ тодорхойлолтоос эхэлье. Экспоненциал тэгш бус байдал нь экспоненциал функц агуулсан аливаа тэгш бус байдлыг хэлнэ. Өөрөөр хэлбэл, энэ нь үргэлж хэлбэрийн тэгш бус байдал болгон бууруулж болно

\[((a)^(x)) \gt b\]

$b$-ын үүрэг нь энгийн тоо эсвэл илүү хатуу зүйл байж болно. Жишээ нь? Тиймээ:

\[\эхлэх(зэрэгцүүлэх) & ((2)^(x)) \gt 4;\quad ((2)^(x-1))\le \frac(1)(\sqrt(2));\ дөрвөлжин ((2)^(((x)^(2))-7x+14)) \lt 16; \\ & ((0,1)^(1-x)) \lt 0.01;\quad ((2)^(\frac(x)(2))) \lt ((4)^(\frac (4) )(x))). \\\төгсгөл(зохицуулах)\]

Миний бодлоор утга нь тодорхой байна: байдаг экспоненциал функц$((a)^(x))$, үүнийг ямар нэгэн зүйлтэй харьцуулж, дараа нь $x$ олохыг хүсэв. Ялангуяа эмнэлзүйн тохиолдлуудад $x$ хувьсагчийн оронд $f\left(x \right)$ функцийг тавьж, улмаар тэгш бус байдлыг бага зэрэг хүндрүүлдэг.

Мэдээжийн хэрэг, зарим тохиолдолд тэгш бус байдал илүү ноцтой харагдаж болно. Энд жишээ нь:

\[((9)^(x))+8 \gt ((3)^(x+2))\]

Эсвэл бүр энэ:

Ерөнхийдөө ийм тэгш бус байдлын нарийн төвөгтэй байдал нь маш өөр байж болох ч эцэст нь тэдгээр нь $((a)^(x)) \gt b$ энгийн бүтэц рүү буурдаг. Бид ямар нэгэн байдлаар ийм бүтээн байгуулалтыг олох болно (ялангуяа эмнэлзүйн тохиолдолд, юу ч санаанд орохгүй бол логарифм бидэнд туслах болно). Тиймээс, одоо бид ийм энгийн бүтээн байгуулалтыг хэрхэн шийдэхийг танд заах болно.

Энгийн экспоненциал тэгш бус байдлыг шийдвэрлэх

Маш энгийн зүйлийг авч үзье. Жишээлбэл, энэ нь:

\[((2)^(x)) \gt 4\]

Мэдээжийн хэрэг, баруун талд байгаа тоог хоёрын зэрэглэлээр дахин бичиж болно: $4=((2)^(2))$. Тиймээс анхны тэгш бус байдлыг маш тохиромжтой хэлбэрээр дахин бичиж болно.

\[((2)^(x)) \gt ((2)^(2))\]

Тэгээд одоо миний гар $x \gt 2$ гэсэн хариултыг авахын тулд гүрний суурь дахь хоёрыг "гаталж" загатнаж байна. Гэхдээ ямар нэг зүйлийг хасахын өмнө хоёрын хүчийг санацгаая.

\[((2)^(1))=2;\quad ((2)^(2))=4;\quad ((2)^(3))=8;\quad ((2)^( 4))=16;...\]

Бидний харж байгаагаар, илүү илүү их тооэкспонентт байгаа бол гаралтын тоо их байх болно. "Баярлалаа, Кап!" - гэж оюутнуудын нэг нь хашгирах болно. Энэ нь өөр үү? Харамсалтай нь ийм зүйл тохиолддог. Жишээ нь:

\[((\left(\frac(1)(2) \баруун))^(1))=\frac(1)(2);\quad ((\left(\frac(1)(2) \ баруун))^(2))=\frac(1)(4);\quad ((\left(\frac(1)(2) \баруун))^(3))=\frac(1)(8) );...\]

Энд бас бүх зүйл логик юм: зэрэг нь их байх тусам 0.5 тоог өөрөө үржүүлнэ (өөрөөр хэлбэл, хагаст хуваагдана). Тиймээс үүссэн тоонуудын дараалал буурч байгаа бөгөөд эхний ба хоёр дахь дарааллын ялгаа нь зөвхөн үндсэн дээр байна:

  • Хэрэв градусын суурь $a \gt 1$ бол илтгэгч $n$ нэмэгдэх тусам $((a)^(n))$ тоо мөн нэмэгдэх болно;
  • Мөн эсрэгээр, хэрэв $0 \lt a \lt 1$ бол $n$ илтгэгч нэмэгдэх тусам $((a)^(n))$ тоо буурах болно.

Эдгээр баримтуудыг нэгтгэн дүгнэснээр бид экспоненциал тэгш бус байдлын бүх шийдэлд үндэслэсэн хамгийн чухал мэдэгдлийг олж авна.

Хэрэв $a \gt 1$ бол $((a)^(x)) \gt ((a)^(n))$ тэгш бус байдал нь $x \gt n$ тэгш бус байдалтай тэнцүү байна. Хэрэв $0 \lt a \lt 1$ бол $((a)^(x)) \gt ((a)^(n))$ тэгш бус байдал нь $x \lt n$ тэгш бус байдалтай тэнцүү байна.

Өөрөөр хэлбэл, суурь нь нэгээс их байвал та үүнийг зүгээр л арилгаж болно - тэгш бус байдлын тэмдэг өөрчлөгдөхгүй. Хэрэв суурь нь нэгээс бага бол үүнийг арилгаж болно, гэхдээ үүнтэй зэрэгцэн та тэгш бус байдлын тэмдгийг өөрчлөх хэрэгтэй болно.

Бид $a=1$ болон $a\le 0$ гэсэн сонголтыг авч үзээгүйг анхаарна уу. Учир нь эдгээр тохиолдолд тодорхойгүй байдал үүсдэг. $((1)^(x)) \gt 3$ хэлбэрийн тэгш бус байдлыг хэрхэн шийдэхийг хэлье? Нэг нь ямар ч хүчинд дахин нэгийг өгөх болно - бид гурав ба түүнээс дээш удаа хэзээ ч авахгүй. Тэдгээр. шийдэл байхгүй.

Сөрөг шалтгаанаар бүх зүйл илүү сонирхолтой байдаг. Жишээлбэл, энэ тэгш бус байдлыг авч үзье.

\[((\left(-2 \баруун))^(x)) \gt 4\]

Эхлээд харахад бүх зүйл энгийн:

Тийм үү? Гэхдээ үгүй! Шийдэл буруу эсэхийг шалгахын тулд $x$-ын оронд хос тэгш, хоёр сондгой тоог орлуулахад хангалттай. Хараад үзээрэй:

\[\эхлэх(зэрэгцүүлэх) & x=4\Баруун сум ((\зүүн(-2 \баруун))^(4))=16 \gt 4; \\ & x=5\Баруун сум ((\зүүн(-2 \баруун))^(5))=-32 \lt 4; \\ & x=6\Баруун сум ((\зүүн(-2 \баруун))^(6))=64 \gt 4; \\ & x=7\Баруун сум ((\зүүн(-2 \баруун))^(7))=-128 \lt 4. \\\төгсгөл(зохицуулах)\]

Таны харж байгаагаар тэмдгүүд ээлжлэн солигддог. Гэхдээ бас бутархай эрх мэдэл болон бусад утгагүй зүйл байдаг. Жишээ нь, та $((\left(-2 \right))^(\sqrt(7)))$ (хоёрыг хасвал долоогийн зэрэглэлд) хэрхэн тооцоолох вэ? Арга ч үгүй!

Тиймээс тодорхой байхын тулд бид бүх экспоненциал тэгш бус байдалд (мөн тэгшитгэлд мөн адил) $1\ne a \gt 0$ байна гэж үздэг. Тэгээд бүх зүйл маш энгийнээр шийдэгддэг:

\[((a)^(x)) \gt ((a)^(n))\Баруун сум \left[ \begin(align) & x \gt n\quad \left(a \gt 1 \баруун), \\ & x \lt n\quad \left(0 \lt a \lt 1 \right). \\\төгсгөл(зэрэгцүүлэх) \баруун.\]

Ерөнхийдөө гол дүрмийг дахин санаарай: хэрэв экспоненциал тэгшитгэлийн суурь нь нэгээс их бол та үүнийг зүгээр л устгаж болно; ба суурь нь нэгээс бага бол түүнийг мөн арилгаж болох боловч тэгш бус байдлын тэмдэг өөрчлөгдөнө.

Шийдлийн жишээ

Тиймээс хэд хэдэн энгийн экспоненциал тэгш бус байдлыг харцгаая.

\[\эхлэх(зэрэгцүүлэх) & ((2)^(x-1))\le \frac(1)(\sqrt(2)); \\ & ((0,1)^(1-x)) \lt 0.01; \\ & ((2)^((x)^(2))-7x+14)) \lt 16; \\ & ((0,2)^(1+((x)^(2))))\ge \frac(1)(25). \\\төгсгөл(зохицуулах)\]

Бүх тохиолдолд үндсэн ажил нь адилхан: тэгш бус байдлыг хамгийн энгийн хэлбэрт $((a)^(x)) \gt ((a)^(n))$ болгон багасгах. Энэ нь яг одоо бид тэгш бус байдал бүрт хийх зүйл бөгөөд үүний зэрэгцээ бид хүч болон экспоненциал функцүүдийн шинж чанарыг давтах болно. За, явцгаая!

\[((2)^(x-1))\le \frac(1)(\sqrt(2))\]

Та энд юу хийж чадах вэ? За, зүүн талд бид аль хэдийн заагч илэрхийлэлтэй байна - юу ч өөрчлөх шаардлагагүй. Гэхдээ баруун талд нь ямар нэгэн тэнэглэл байна: бутархай, бүр хуваагч дахь үндэс!

Гэсэн хэдий ч бутархай ба хүчнүүдтэй ажиллах дүрмийг санацгаая.

\[\begin(align) & \frac(1)(((a)^(n)))=((a)^(-n)); \\ & \sqrt[k](a)=((a)^(\frac(1)(k))). \\\төгсгөл(зохицуулах)\]

Энэ нь юу гэсэн үг вэ? Нэгдүгээрт, бид бутархайг сөрөг илтгэгчтэй хүч болгон хувиргаснаар амархан салж чадна. Хоёрдугаарт, хуваагч нь язгууртай тул түүнийг хүч болгон хувиргавал зүгээр байх болно - энэ удаад бутархай илтгэгчээр.

Эдгээр үйлдлийг тэгш бус байдлын баруун талд дараалан хийж, юу болохыг харна уу:

\[\frac(1)(\sqrt(2))=((\left(\sqrt(2) \баруун))^(-1))=((\left(((2)^(\frac() 1)(3))) \баруун))^(-1))=((2)^(\frac(1)(3)\cdot \left(-1 \баруун)=((2)^ (-\frac(1)(3)))\]

Нэг зэрэглэлийг хүч болгон өсгөхөд эдгээр зэрэглэлийн илтгэгчүүд нийлдэг гэдгийг бүү мартаарай. Ерөнхийдөө экспоненциал тэгшитгэл ба тэгш бус байдалтай ажиллахдаа хүч чадалтай ажиллах хамгийн энгийн дүрмийг мэдэх нь зайлшгүй шаардлагатай.

\[\begin(align) & ((a)^(x))\cdot ((a)^(y))=((a)^(x+y)); \\ & \frac(((a)^(x)))(((a)^(y)))=((a)^(x-y)); \\ & ((\left(((a)^(x)) \баруун))^(y))=((a)^(x\cdot y)). \\\төгсгөл(зохицуулах)\]

Үнэндээ бид сүүлийн дүрмийг л хэрэгжүүлсэн. Тиймээс бидний анхны тэгш бус байдлыг дараах байдлаар дахин бичих болно.

\[((2)^(x-1))\le \frac(1)(\sqrt(2))\Баруун сум ((2)^(x-1))\le ((2)^(-\ frac(1)(3)))\]

Одоо бид хоёр баазаас салж байна. 2 > 1 тул тэгш бус байдлын тэмдэг ижил хэвээр байна:

\[\эхлэх(зэрэгцүүлэх) & x-1\le -\frac(1)(3)\Баруун сум x\le 1-\frac(1)(3)=\frac(2)(3); \\ & x\in \left(-\infty;\frac(2)(3) \баруун]. \\\төгсгөл(зохицуулах)\]

Энэ бол шийдэл! Гол бэрхшээл нь экспоненциал функцэд огтхон ч биш, харин анхны илэрхийлэлийг чадварлаг хувиргах явдал юм: та үүнийг хамгийн энгийн хэлбэрт нь болгоомжтой, хурдан оруулах хэрэгтэй.

Хоёр дахь тэгш бус байдлыг авч үзье.

\[((0.1)^(1-x)) \lt 0.01\]

Тийм, тийм. Энд аравтын бутархайнууд биднийг хүлээж байна. Би олон удаа хэлсэнчлэн, ямар ч эрх мэдэл бүхий илэрхийлэлд та аравтын бутархайг арилгах хэрэгтэй - энэ нь ихэвчлэн хурдан бөгөөд энгийн шийдлийг олж харах цорын ганц арга зам юм. Энд бид дараахь зүйлийг арилгах болно.

\[\begin(align) & 0.1=\frac(1)(10);\quad 0.01=\frac(1)(100)=((\left(\frac(1)(10) \ баруун))^ (2)); \\ & ((0,1)^(1-x)) \lt 0,01\Баруун сум ((\left(\frac(1)(10) \баруун))^(1-x)) \lt ( (\left(\frac(1)(10) \баруун))^(2)). \\\төгсгөл(зохицуулах)\]

Энд дахин бид хамгийн энгийн тэгш бус байдал, тэр ч байтугай 1/10 суурьтай, i.e. нэгээс бага. За, бид суурийг арилгаж, тэмдгийг "бага" -аас "илүү" болгон өөрчилснөөр бид дараахь зүйлийг авна.

\[\эхлэх(эгцлэх) & 1-x \gt 2; \\ & -x \gt 2-1; \\ & -x \gt 1; \\& x \lt -1. \\\төгсгөл(зохицуулах)\]

Бид эцсийн хариултыг авсан: $x\in \left(-\infty ;-1 \right)$. Анхаарна уу: хариулт нь тодорхой багц бөгөөд ямар ч тохиолдолд $x \lt -1$ хэлбэрийн бүтээн байгуулалт биш юм. Учир нь албан ёсоор ийм бүтээн байгуулалт нь олонлог биш, харин $x$ хувьсагчийн хувьд тэгш бус байдал юм. Тийм ээ, энэ нь маш энгийн, гэхдээ энэ нь хариулт биш юм!

Чухал тэмдэглэл. Энэ тэгш бус байдлыг өөр аргаар шийдэж болох юм - хоёр талыг нэгээс их суурьтай хүч болгон бууруулж болно. Хараад үзээрэй:

\[\frac(1)(10)=((10)^(-1))\Баруун сум ((\зүүн(((10)^(-1)) \баруун))^(1-x)) \ lt ((\зүүн(((10)^(-1)) \баруун))^(2))\Баруун сум ((10)^(-1\cdot \left(1-x \баруун)))) \lt ((10)^(-1\cdot 2))\]

Ийм хувиргалт хийсний дараа бид дахин экспоненциал тэгш бус байдлыг олж авах болно, гэхдээ суурь нь 10 > 1. Энэ нь бид аравыг зүгээр л зурж болно гэсэн үг юм - тэгш бус байдлын тэмдэг өөрчлөгдөхгүй. Бид авах:

\[\begin(align) & -1\cdot \left(1-x \right) \lt -1\cdot 2; \\ & x-1 \lt -2; \\ & x \lt -2+1=-1; \\ & x \lt -1. \\\төгсгөл(зохицуулах)\]

Таны харж байгаагаар хариулт нь яг адилхан байсан. Үүний зэрэгцээ бид тэмдгийг өөрчлөх шаардлагаас өөрийгөө аварч, ямар ч дүрмийг санаж байна :)

\[((2)^(((x)^(2))-7x+14)) \lt 16\]

Гэсэн хэдий ч энэ нь таныг айлгахыг бүү зөвшөөр. Шалгуур үзүүлэлтэд юу ч байсан хамаагүй, тэгш бус байдлыг шийдвэрлэх технологи нь өөрөө хэвээр байна. Тиймээс эхлээд 16 = 2 4 гэдгийг тэмдэглэе. Энэ баримтыг харгалзан анхны тэгш бус байдлыг дахин бичье.

\[\begin(align) & ((2)^(((x)^(2))-7x+14)) \lt ((2)^(4)); \\ & ((x)^(2))-7x+14 \lt 4; \\ & ((x)^(2))-7x+10 \lt 0. \\\төгсгөл(зохицуулах)\]

Өө! Бид ердийнхөө авсан квадрат тэгш бус байдал! Суурь нь хоёр буюу нэгээс их тоо тул тэмдэг нь хаана ч өөрчлөгдөөгүй.

Тооны шулуун дээрх функцын тэг

Бид $f\left(x \right)=((x)^(2))-7x+10$ функцийн тэмдгүүдийг цэгцлэв - мэдээжийн хэрэг түүний график нь дээш салбарласан парабол байх тул "нэмэх" байх болно. ” тал дээр. Бид функц нь тэгээс бага байгаа бүс нутгийг сонирхож байна, i.e. $x\in \left(2;5 \right)$ нь анхны бодлогын хариулт юм.

Эцэст нь өөр нэг тэгш бус байдлыг авч үзье:

\[((0,2)^(1+((x)^(2))))\ge \frac(1)(25)\]

Дахин бид аравтын бутархай суурьтай экспоненциал функцийг харж байна. Энэ бутархайг энгийн бутархай болгон хөрвүүлье:

\[\эхлэх(зэрэгцүүлэх) & 0.2=\frac(2)(10)=\frac(1)(5)=((5)^(-1))\Баруун сум \\ & \Баруун сум ((0 ,2) )^(1+((x)^(2))))=((\зүүн(((5)^(-1)) \баруун))^(1+((x)^(2) )) )=((5)^(-1\cdot \left(1+((x)^(2)) \баруун)))\төгсгөл(эгц)\]

Энэ тохиолдолд бид өмнө нь өгсөн тайлбарыг ашигласан - бид цаашдын шийдлийг хялбарчлахын тулд суурийг 5>1 тоо болгон бууруулсан. Баруун талд нь ижил зүйлийг хийцгээе:

\[\frac(1)(25)=((\left(\frac(1)(5) \баруун))^(2))=((\left(((5)^(-1)) \ баруун))^(2))=((5)^(-1\cdot 2))=((5)^(-2))\]

Хоёр хувиргалтыг харгалзан анхны тэгш бус байдлыг дахин бичье.

\[((0,2)^(1+((x)^(2))))\ge \frac(1)(25)\Баруун сум ((5)^(-1\cdot \left(1+) ((x)^(2)) \баруун)))\ge ((5)^(-2))\]

Хоёр талын суурь нь ижил бөгөөд нэгээс давсан. Баруун болон зүүн талд өөр нэр томъёо байхгүй тул бид тавыг "тасалж" маш энгийн илэрхийлэлийг олж авна.

\[\begin(align) & -1\cdot \left(1+((x)^(2)) \right)\ge -2; \\ & -1-((x)^(2))\ge -2; \\ & -((x)^(2))\ge -2+1; \\ & -((x)^(2))\ge -1;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))\le 1. \\\төгсгөл(зохицуулах)\]

Эндээс та илүү болгоомжтой байх хэрэгтэй. Олон оюутнууд зүгээр л задлах дуртай квадрат язгуурТэгш бус байдлын хоёр талын язгуурыг $x\le 1\Rightarrow x\in \left(-\infty ;-1 \right]$ гэх мэтээр бичнэ үү. Яг дөрвөлжингийн язгуур нь ямар ч тохиолдолд үүнийг хийх ёсгүй. модуль, ямар ч тохиолдолд анхны хувьсагч:

\[\sqrt(((x)^(2)))=\left| x\right|\]

Гэсэн хэдий ч модультай ажиллах нь хамгийн таатай туршлага биш, тийм үү? Тиймээс бид ажиллахгүй. Үүний оронд бид зүгээр л бүх нөхцөлийг зүүн тийш шилжүүлж, интервалын аргыг ашиглан ердийн тэгш бус байдлыг шийднэ.

$\begin(align) & ((x)^(2))-1\le 0; \\ & \left(x-1 \right)\left(x+1 \right)\le 0 \\ & ((x)_(1))=1;\quad ((x)_(2)) =-1; \\\төгсгөл(зохицуулах)$

Бид олж авсан цэгүүдийг тоон шулуун дээр дахин тэмдэглээд тэмдгүүдийг харна.

Анхаарна уу: цэгүүд сүүдэртэй байна

Бид хатуу бус тэгш бус байдлыг шийдэж байсан тул график дээрх бүх цэгүүд сүүдэртэй байна. Тиймээс хариулт нь: $x\in \left[ -1;1 \right]$ нь интервал биш харин сегмент юм.

Ерөнхийдөө экспоненциал тэгш бус байдлын хувьд төвөгтэй зүйл байхгүй гэдгийг тэмдэглэхийг хүсч байна. Өнөөдөр бидний хийсэн бүх өөрчлөлтийн утга нь энгийн алгоритм дээр бууж байна.

  • Бид бүх зэрэглэлийг бууруулах үндэслэлийг олох;
  • $((a)^(x)) \gt ((a)^(n))$ хэлбэрийн тэгш бус байдлыг олж авахын тулд хувиргалтыг болгоомжтой хийнэ. Мэдээжийн хэрэг, $x$ ба $n$ хувьсагчдын оронд илүү олон хувьсагч байж болно нарийн төвөгтэй функцууд, гэхдээ утга нь өөрчлөгдөхгүй;
  • Зэрэглэлийн суурийг хөндлөн зур. Энэ тохиолдолд суурь $a \lt 1$ байвал тэгш бус байдлын тэмдэг өөрчлөгдөж болно.

Үнэн хэрэгтээ энэ нь бүх тэгш бус байдлыг шийдвэрлэх бүх нийтийн алгоритм юм. Мөн энэ сэдвээр танд хэлэх бусад бүх зүйл бол өөрчлөлтийг хялбаршуулж, хурдасгах тодорхой арга техник, заль мэх юм. Бид одоо эдгээр техникүүдийн талаар ярих болно.

оновчтой болгох арга

Өөр нэг тэгш бус байдлын багцыг авч үзье.

\[\эхлэх(зэрэгцүүлэх) & ((\text( )\!\!\pi\!\!\text( ))^(x+7)) \gt ((\text( )\!\!\pi \!\!\text( ))^(((x)^(2))-3x+2)); \\ & ((\left(2\sqrt(3)-3 \баруун))^(((x)^(2))-2x)) \lt 1; \\ & ((\left(\frac(1)(3) \баруун))^(((x)^(2))+2x)) \gt ((\left(\frac(1)(9) \right))^(16-x)); \\ & ((\left(3-2\sqrt(2) \баруун))^(3x-((x)^(2)))) \lt 1. \\\end(align)\]

Тэгвэл тэдний юугаараа онцлог вэ? Тэд хөнгөн. Гэсэн хэдий ч зогсоо! π тоог тодорхой хэмжээнд өсгөсөн үү? Ямар утгагүй юм бэ?

$2\sqrt(3)-3$ тоог хэрхэн хүчирхэг болгох вэ? Эсвэл $3-2\sqrt(2)$? Асуудлын зохиолчид ажилдаа суухаасаа өмнө хэт их долоогоно уусан нь ойлгомжтой.

Үнэндээ эдгээр ажлуудад аймшигтай зүйл байхгүй. Танд сануулъя: экспоненциал функц нь $((a)^(x))$ хэлбэрийн илэрхийлэл бөгөөд $a$ суурь нь нэгээс бусад эерэг тоо юм. π тоо эерэг - бид үүнийг аль хэдийн мэддэг. $2\sqrt(3)-3$ болон $3-2\sqrt(2)$ гэсэн тоонууд ч эерэг байдаг - хэрэв та тэдгээрийг тэгтэй харьцуулж үзвэл үүнийг харахад хялбар болно.

Энэ бүх "аймшигтай" тэгш бус байдлыг дээр дурдсан энгийн зүйлсээс ялгаагүй шийдэж байгаа юм болов уу? Мөн тэд адилхан шийдэгдсэн үү? Тийм ээ, энэ үнэхээр зөв. Гэсэн хэдий ч тэдний жишээн дээр би бие даасан ажил, шалгалтын цагийг ихээхэн хэмнэдэг нэг аргыг авч үзэхийг хүсч байна. Бид оновчтой болгох аргын талаар ярих болно. Тиймээс, анхаарал:

$((a)^(x)) \gt ((a)^(n))$ хэлбэрийн аливаа экспоненциал тэгш бус байдал нь $\left(x-n \right)\cdot \left(a-1 \) тэгш бус байдалтай тэнцүү байна. баруун) \gt 0 $.

Энэ бол бүхэл бүтэн арга. :) Та өөр төрлийн тоглоом болно гэж бодож байсан уу? Ийм зүйл байхгүй! Гэхдээ нэг мөрөнд шууд утгаар нь бичсэн энэ энгийн баримт нь бидний ажлыг ихээхэн хөнгөвчлөх болно. Хараад үзээрэй:

\[\эхлэх(матриц) ((\text( )\!\!\pi\!\!\text( ))^(x+7)) \gt ((\text( )\!\!\pi\ !\!\text( ))^(((x)^(2))-3x+2)) \\ \Дотоод \\ \зүүн(x+7-\зүүн(((x)^(2)) -3x+2 \баруун) \баруун)\cdot \left(\text( )\!\!\pi\!\!\text( )-1 \баруун) \gt 0 \\\end(матриц)\]

Тиймээс экспоненциал функц байхгүй болно! Мөн тэмдэг өөрчлөгдсөн эсэхийг санах шаардлагагүй. Гэхдээ энэ нь үүсдэг шинэ асуудал: новшийн үржүүлэгчийг яах вэ \[\left(\text( )\!\!\pi\!\!\text( )-1 \right)\]? π тооны яг ямар утгатай болохыг бид мэдэхгүй. Гэсэн хэдий ч ахмад тодорхой зүйлийг сануулж байх шиг байна:

\[\text( )\!\!\pi\!\!\text( )\ойролцоогоор 3.14... \gt 3\Баруун сум \text( )\!\!\pi\!\!\text( )- 1\gt 3-1=2\]

Ерөнхийдөө π-ийн яг утга нь бидэнд огт хамаагүй - ямар ч тохиолдолд $\text( )\!\!\pi\!\!\text( )-1 \gt 2 гэдгийг ойлгох нь бидний хувьд чухал юм. $, t.e. Энэ нь эерэг тогтмол бөгөөд тэгш бус байдлын хоёр талыг түүгээр хувааж болно.

\[\begin(align) & \left(x+7-\left(((x)^(2))-3x+2 \right) \right)\cdot \left(\text( )\!\! \pi\!\!\text( )-1 \баруун) \gt 0 \\ & x+7-\left(((x)^(2))-3x+2 \баруун) \gt 0; \\ & x+7-((x)^(2))+3x-2 \gt 0; \\ & -((x)^(2))+4x+5 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))-4x-5 \lt 0; \\ & \зүүн(x-5 \баруун)\зүүн(x+1 \баруун) \lt 0. \\\төгсгөл(эгц)\]

Таны харж байгаагаар тодорхой мөчид бид хасах нэгээр хуваах шаардлагатай болсон бөгөөд тэгш бус байдлын тэмдэг өөрчлөгдсөн. Төгсгөлд нь би квадрат гурвалжийг Виетийн теоремыг ашиглан өргөжүүлсэн - язгуурууд нь $((x)_(1))=5$ ба $((x)_(2))=-1$-тэй тэнцүү байх нь ойлгомжтой. . Дараа нь бүх зүйлийг сонгодог интервалын аргыг ашиглан шийддэг.

Интервалын аргыг ашиглан тэгш бус байдлыг шийдвэрлэх

Анхны тэгш бус байдал нь хатуу тул бүх оноо хасагдсан. Бид сөрөг утгатай бүс нутгийг сонирхож байгаа тул хариулт нь $x\in \left(-1;5 \right)$ байна. Энэ бол шийдэл. :)

Дараагийн асуудал руу шилжье:

\[((\left(2\sqrt(3)-3 \баруун))^(((x)^(2))-2x)) \lt 1\]

Энд бүх зүйл ерөнхийдөө энгийн, учир нь баруун талд нэгж байдаг. Нэг нь тэг зэрэглэлд хүрсэн ямар ч тоо гэдгийг бид санаж байна. Хэдийгээр энэ тоо нь зүүн талын суурь дахь иррационал илэрхийлэл байсан ч:

\[\эхлэх(эгцлэх) & ((\left(2\sqrt(3)-3 \баруун))^(((x)^(2))-2x)) \lt 1=((\left(2) \sqrt(3)-3 \right))^(0)); \\ & ((\left(2\sqrt(3)-3 \баруун))^(((x)^(2))-2x)) \lt ((\left(2\sqrt(3)-3) \right)))^(0)); \\\төгсгөл(зохицуулах)\]

За, оновчтой болгоё:

\[\begin(align) & \left(((x)^(2))-2x-0 \right)\cdot \left(2\sqrt(3)-3-1 \right) \lt 0; \\ & \left(((x)^(2))-2x-0 \right)\cdot \left(2\sqrt(3)-4 \right) \lt 0; \\ & \left(((x)^(2))-2x-0 \баруун)\cdot 2\left(\sqrt(3)-2 \баруун) \lt 0. \\\төгсгөл(эгц)\ ]

Үлдсэн зүйл бол шинж тэмдгийг олж мэдэх явдал юм. $2\left(\sqrt(3)-2 \right)$ хүчин зүйл нь $x$ хувьсагчийг агуулаагүй - энэ нь зүгээр л тогтмол бөгөөд бид түүний тэмдгийг олж мэдэх хэрэгтэй. Үүнийг хийхийн тулд дараахь зүйлийг анхаарна уу.

\[\begin(матриц) \sqrt(3) \lt \sqrt(4)=2 \\ \Дотоод \\ 2\зүүн(\sqrt(3)-2 \баруун) \lt 2\cdot \left(2) -2 \баруун)=0 \\\төгсгөл(матриц)\]

Хоёрдахь хүчин зүйл нь тогтмол биш, харин сөрөг тогтмол юм! Үүнийг хуваахдаа анхны тэгш бус байдлын тэмдэг эсрэгээр өөрчлөгдөнө.

\[\begin(align) & \left(((x)^(2))-2x-0 \right)\cdot 2\left(\sqrt(3)-2 \right) \lt 0; \\ & ((x)^(2))-2x-0 \gt 0; \\ & x\left(x-2 \баруун) \gt 0. \\\төгсгөл(зохицуулах)\]

Одоо бүх зүйл бүрэн тодорхой болж байна. Үндэс квадрат гурвалжин, баруун талд зогсож байна: $((x)_(1))=0$ болон $((x)_(2))=2$. Бид тэдгээрийг тооны мөрөнд тэмдэглээд $f\left(x \right)=x\left(x-2 \right)$ функцийн тэмдгүүдийг харна:

Бид хажуугийн интервалыг сонирхож байгаа тохиолдол

Бид нэмэх тэмдгээр тэмдэглэгдсэн интервалуудыг сонирхож байна. Хариултаа бичих л үлдлээ:

Дараагийн жишээ рүү шилжье:

\[((\left(\frac(1)(3) \баруун))^(((x)^(2))+2x)) \gt ((\left(\frac(1)(9) \ баруун))^(16-x))\]

Энд бүх зүйл тодорхой байна: суурь нь ижил тооны хүчийг агуулдаг. Тиймээс би бүгдийг товчхон бичих болно:

\[\begin(матриц) \frac(1)(3)=((3)^(-1));\quad \frac(1)(9)=\frac(1)(((3)^( 2)))=((3)^(-2)) \\ \Доошоо \\ ((\зүүн(((3)^(-1)) \баруун))^(((x)^(2) )+2x)) \gt ((\left(((3)^(-2)) \баруун))^(16-x)) \\\төгсгөл(матриц)\]

\[\begin(align) & ((3)^(-1\cdot \left(((x)^(2))+2x \right))) \gt ((3)^(-2\cdot \ зүүн(16-х \баруун)))); \\ & ((3)^(-((x)^(2))-2x)) \gt ((3)^(-32+2x)); \\ & \left(-((x)^(2))-2x-\left(-32+2x \баруун) \баруун)\cdot \left(3-1 \баруун) \gt 0; \\ & -((x)^(2))-2x+32-2x \gt 0; \\ & -((x)^(2))-4x+32 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))+4x-32 \lt 0; \\ & \зүүн(x+8 \баруун)\зүүн(x-4 \баруун) \lt 0. \\\төгсгөл(эгц)\]

Таны харж байгаагаар, өөрчлөлтийн явцад бид үржүүлэх шаардлагатай болсон сөрөг тоо, тэгэхээр тэгш бус байдлын тэмдэг өөрчлөгдсөн. Төгсгөлд нь би дахин Виетийн теоремыг ашиглан квадрат гурвалжийг хүчин зүйл болгон ашигласан. Үүний үр дүнд хариулт нь дараах байх болно: $x\in \left(-8;4 \right)$ - хэн ч үүнийг тоон шугам татаж, цэгүүдийг тэмдэглэж, тэмдгийг тоолж баталгаажуулж болно. Үүний зэрэгцээ бид "иж бүрдэл"-ээс сүүлчийн тэгш бус байдал руу шилжих болно.

\[((\left(3-2\sqrt(2) \баруун))^(3x-((x)^(2)))) \lt 1\]

Таны харж байгаагаар суурь дээр дахин иррационал тоо байгаа бөгөөд баруун талд дахин нэгж байна. Тиймээс бид экспоненциал тэгш бус байдлыг дараах байдлаар дахин бичнэ.

\[((\left(3-2\sqrt(2) \баруун))^(3x-((x)^(2)))) \lt ((\left(3-2\sqrt(2) \ баруун))^(0))\]

Бид оновчтой болгохыг ашигладаг:

\[\begin(align) & \left(3x-((x)^(2))-0 \right)\cdot \left(3-2\sqrt(2)-1 \right) \lt 0; \\ & \left(3x-((x)^(2))-0 \баруун)\cdot \left(2-2\sqrt(2) \баруун) \lt 0; \\ & \left(3x-((x)^(2))-0 \баруун)\cdot 2\left(1-\sqrt(2) \баруун) \lt 0. \\\төгсгөл(эгц)\ ]

Гэсэн хэдий ч $1-\sqrt(2) \lt 0$ байх нь маш ойлгомжтой, учир нь $\sqrt(2)\ойролцоогоор 1,4... \gt 1$. Тиймээс хоёр дахь хүчин зүйл нь дахин сөрөг тогтмол бөгөөд түүгээр тэгш бус байдлын хоёр талыг хувааж болно.

\[\эхлэх(матриц) \left(3x-((x)^(2))-0 \баруун)\cdot 2\left(1-\sqrt(2) \баруун) \lt 0 \\ \Дотоод \ \\төгсгөл(матриц)\]

\[\эхлэх(зохицуулах) & 3x-((x)^(2))-0 \gt 0; \\ & 3x-((x)^(2)) \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))-3x \lt 0; \\ & x\left(x-3 \баруун) \lt 0. \\\төгсгөл(зохицуулах)\]

Өөр суурь руу шилжих

Экспоненциал тэгш бус байдлыг шийдвэрлэх тусдаа асуудал бол "зөв" суурийг хайх явдал юм. Харамсалтай нь аливаа ажлыг эхлээд харахад юуг үндэс болгон авах, энэ суурийн зэрэглэлд нийцүүлэн юу хийх нь тодорхой байдаггүй.

Гэхдээ санаа зовох хэрэггүй: энд ид шид, "нууц" технологи байхгүй. Математикийн хувьд алгоритмчлах боломжгүй аливаа чадварыг дадлага хийх замаар хялбархан хөгжүүлж болно. Гэхдээ үүний тулд та янз бүрийн түвшний нарийн төвөгтэй асуудлыг шийдэх хэрэгтэй болно. Жишээлбэл, иймэрхүү:

\[\begin(align) & ((2)^(\frac(x)(2))) \lt ((4)^(\frac(4)(x))); \\ & ((\left(\frac(1)(3) \баруун))^(\frac(3)(x)))\ge ((3)^(2+x)); \\ & ((\left(0,16 \баруун))^(1+2x))\cdot ((\left(6,25 \баруун))^(x))\ge 1; \\ & ((\left(\frac(27)(\sqrt(3)) \баруун))^(-x)) \lt ((9)^(4-2x))\cdot 81. \\\ төгсгөл(тэгцүүлэх)\]

Хэцүү үү? Аймшигтай юу? Асфальт дээр тахиа цохихоос хамаагүй амархан! Оролдоод үзье. Эхний тэгш бус байдал:

\[((2)^(\frac(x)(2))) \lt ((4)^(\frac(4)(x)))\]

Энд бүх зүйл тодорхой байна гэж би бодож байна:

Бид анхны тэгш бус байдлыг дахин бичиж, бүх зүйлийг хоёр суурь болгон бууруулна.

\[((2)^(\frac(x)(2))) \lt ((2)^(\frac(8)(x)))\Баруун сум \left(\frac(x)(2)- \frac(8)(x) \баруун)\cdot \left(2-1 \баруун) \lt 0\]

Тийм ээ, тийм ээ, та зөв сонссон: Би дээр дурдсан оновчтой аргыг ашигласан. Одоо бид анхааралтай ажиллах хэрэгтэй: бидэнд бутархай-рациональ тэгш бус байдал байгаа (энэ нь хуваарьт хувьсагчтай тэгш бус байдал) тул аливаа зүйлийг тэгтэй тэнцүүлэхийн өмнө бид бүх зүйлийг нийтлэг хуваагч руу авчирч, тогтмол хүчин зүйлээс салах хэрэгтэй. .

\[\эхлэх(зэрэгцүүлэх) & \left(\frac(x)(2)-\frac(8)(x) \баруун)\cdot \left(2-1 \баруун) \lt 0; \\ & \left(\frac(((x)^(2))-16)(2x) \баруун)\cdot 1 \lt 0; \\ & \frac(((x)^(2))-16)(2x) \lt 0. \\\төгсгөл(зохицуулах)\]

Одоо бид стандарт интервалын аргыг ашиглаж байна. Тоологч тэг: $x=\pm 4$. Зөвхөн $x=0$ үед хуваагч тэг болно. Нийтдээ 3 цэгийг тоон шулуун дээр тэмдэглэх шаардлагатай (тэгш бус байдлын тэмдэг нь хатуу тул бүх цэгүүдийг хавчуулсан). Бид авах:


Илүү төвөгтэй тохиолдол: гурван үндэс

Таны таамаглаж байгаачлан сүүдэрлэх нь зүүн талын илэрхийлэл сөрөг утгатай байх интервалуудыг тэмдэглэдэг. Тиймээс эцсийн хариулт нь нэг дор хоёр интервалыг агуулна.

Анхны тэгш бус байдал нь хатуу байсан тул интервалын төгсгөлийг хариултанд оруулаагүй болно. Энэ хариултыг дахин баталгаажуулах шаардлагагүй. Үүнтэй холбогдуулан экспоненциал тэгш бус байдал нь логарифмынхаас хамаагүй хялбар байдаг: ODZ байхгүй, хязгаарлалт байхгүй гэх мэт.

Дараагийн даалгавар руу шилжье:

\[((\left(\frac(1)(3) \баруун))^(\frac(3)(x)))\ge ((3)^(2+x))\]

Энд бас асуудал байхгүй, учир нь бид $\frac(1)(3)=((3)^(-1))$ гэдгийг аль хэдийн мэдэж байгаа тул тэгш бус байдлыг бүхэлд нь дараах байдлаар дахин бичиж болно.

\[\эхлэх(зэрэгцүүлэх) & ((\left(((3)^(-1)) \баруун))^(\frac(3)(x)))\ge ((3)^(2+x) ))\Баруун сум ((3)^(-\frac(3)(x)))\ge ((3)^(2+x)); \\ & \left(-\frac(3)(x)-\left(2+x \баруун) \баруун)\cdot \left(3-1 \баруун)\ge 0; \\ & \left(-\frac(3)(x)-2-x \right)\cdot 2\ge 0;\quad \left| :\left(-2 \right) \right. \\ & \frac(3)(x)+2+x\le 0; \\ & \frac(((x)^(2))+2x+3)(x)\le 0. \\\төгсгөл(зохицуулах)\]

Анхаарна уу: гурав дахь мөрөнд би жижиг зүйлд цаг үрэхгүй байхаар шийдсэн бөгөөд тэр даруй бүх зүйлийг (−2) хуваана. Минул эхний хаалтанд орсон (одоо хаа сайгүй давуу тал байгаа), хоёрыг тогтмол хүчин зүйлээр бууруулсан. Энэ нь бие даасан болон дээр бодит дэлгэц бэлтгэх үед яг хийх ёстой зүйл юм туршилтууд- үйлдэл, өөрчлөлт бүрийг дүрслэх шаардлагагүй.

Дараа нь интервалын танил арга хэрэгжиж байна. Тоологч тэг: гэхдээ байхгүй. Учир нь ялгаварлагч сөрөг байх болно. Хариуд нь, хуваагчийг зөвхөн $x=0$ үед л шинэчилнэ - яг өмнөх үеийнх шиг. За, $x=0$-ийн баруун талд бутархай эерэг утгыг, зүүн талд нь сөрөг утгыг авах нь тодорхой байна. Бид сөрөг утгыг сонирхож байгаа тул эцсийн хариулт нь: $x\in \left(-\infty ;0 \right)$.

\[((\left(0.16 \баруун))^(1+2x))\cdot ((\left(6.25 \баруун))^(x))\ge 1\]

Экспоненциал тэгш бус байдлын аравтын бутархайг юу хийх ёстой вэ? Энэ нь зөв: тэднээс салж, энгийн зүйл болгон хувирга. Энд бид орчуулах болно:

\[\эхлэх(зэрэгцүүлэх) & 0.16=\frac(16)(100)=\frac(4)(25)\Баруун сум ((\зүүн(0.16 \баруун))^(1+2х)) =(\ зүүн(\frac(4)(25) \баруун))^(1+2х)); \\ & 6.25=\frac(625)(100)=\frac(25)(4)\Баруун сум ((\зүүн(6.25 \баруун))^(x))=((\зүүн(\ frac(25)) (4)\баруун))^(x)). \\\төгсгөл(зохицуулах)\]

Тэгэхээр бид экспоненциал функцийн үндэс дээр юу олж авсан бэ? Мөн бид хоёр урвуу тоог авсан:

\[\frac(25)(4)=((\зүүн(\frac(4)(25) \баруун))^(-1))\Баруун сум ((\зүүн(\frac(25)(4) \ баруун))^(x))=((\left(((\left(\frac(4)(25) \баруун))^(-1)) \баруун))^(x))=((\ зүүн(\frac(4)(25) \баруун))^(-x))\]

Тиймээс анхны тэгш бус байдлыг дараах байдлаар дахин бичиж болно.

\[\эхлэх(зэрэгцүүлэх) & ((\left(\frac(4)(25) \баруун))^(1+2x))\cdot ((\left(\frac(4)(25) \баруун) )^(-x))\ge 1; \\ & ((\left(\frac(4)(25) \баруун))^(1+2x+\left(-x \баруун)))\ge ((\left(\frac(4)(25) \right)))^(0)); \\ & ((\left(\frac(4)(25) \баруун))^(x+1))\ge ((\left(\frac(4)(25) \баруун))^(0) ). \\\төгсгөл(зохицуулах)\]

Мэдээжийн хэрэг, ижил суурьтай хүчийг үржүүлэхэд тэдгээрийн илтгэгчүүд нэмэгдэх бөгөөд энэ нь хоёр дахь мөрөнд болсон явдал юм. Нэмж дурдахад бид баруун талд байгаа нэгжийг, мөн 4/25-ийн суурь дахь хүч болгон төлөөлсөн. Үлдсэн зүйл бол оновчтой болгох явдал юм:

\[((\left(\frac(4)(25) \баруун))^(x+1))\ge ((\left(\frac(4)(25) \баруун))^(0)) \Баруун сум \left(x+1-0 \баруун)\cdot \left(\frac(4)(25)-1 \баруун)\ge 0\]

$\frac(4)(25)-1=\frac(4-25)(25) \lt 0$, i.e. Хоёрдахь хүчин зүйл нь сөрөг тогтмол бөгөөд үүнийг хуваах үед тэгш бус байдлын тэмдэг өөрчлөгдөнө.

\[\эхлэх(зэрэгцүүлэх) & x+1-0\le 0\Баруун сум x\le -1; \\ & x\in \left(-\infty;-1 \баруун]. \\\төгсгөл(зохицуулах)\]

Эцэст нь одоогийн "багц" -ын сүүлчийн тэгш бус байдал:

\[((\left(\frac(27)(\sqrt(3)) \баруун))^(-x)) \lt ((9)^(4-2x))\cdot 81\]

Зарчмын хувьд энд байгаа шийдлийн санаа нь тодорхой байна: тэгш бус байдалд орсон бүх экспоненциал функцийг "3" суурь болгон бууруулах ёстой. Гэхдээ үүний тулд та үндэс, хүч чадлын талаар бага зэрэг оролдох хэрэгтэй болно.

\[\begin(align) & \frac(27)(\sqrt(3))=\frac(((3)^(3)))(((3)^(\frac(1)(3)) ))=((3)^(3-\frac(1)(3)))=((3)^(\frac(8)(3))); \\ & 9=((3)^(2));\quad 81=((3)^(4)). \\\төгсгөл(зохицуулах)\]

Эдгээр баримтуудыг харгалзан анхны тэгш бус байдлыг дараах байдлаар дахин бичиж болно.

\[\эхлэх(эгцлэх) & ((\left(((3)^(\frac(8)(3))) \баруун))^(-x)) \lt ((\left(((3)) ^(2))\баруун))^(4-2x))\cdot ((3)^(4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(8-4x))\cdot ((3)^(4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(8-4x+4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(4-4x)). \\\төгсгөл(зохицуулах)\]

Тооцооллын 2, 3-р мөрөнд анхаарлаа хандуулаарай: тэгш бус байдалтай ямар нэгэн зүйл хийхээсээ өмнө үүнийг хичээлийн эхнээс ярьж байсан хэлбэрт оруулахаа мартуузай: $((a)^(x)) \ lt ((a)^(n))$. Хэрэв та зүүн эсвэл баруун талд зарим нэг солгой хүчин зүйл, нэмэлт тогтмол гэх мэт зүйлс байгаа бол, үндэслэлийг үндэслэлтэй болгох, "таслах" боломжгүй! Энэхүү энгийн баримтыг ойлгоогүйн улмаас тоо томшгүй олон ажлыг буруу гүйцэтгэсэн. Экспоненциал болон логарифмын тэгш бус байдлын шинжилгээг дөнгөж эхэлж байх үед би өөрөө оюутнуудтайгаа энэ асуудлыг байнга ажигладаг.

Гэхдээ даалгавар руугаа буцаж орцгооё. Энэ удаад оновчтой үндэслэлгүйгээр хийхийг оролдъё. Санаж үзье: зэрэглэлийн суурь нь нэгээс их байдаг тул гурвалсан тоог зүгээр л зурж болно - тэгш бус байдлын тэмдэг өөрчлөгдөхгүй. Бид авах:

\[\эхлэх(зохицуулах) & -\frac(8x)(3) \lt 4-4x; \\ & 4x-\frac(8x)(3) \lt 4; \\ & \frac(4x)(3) \lt 4; \\ & 4x \lt 12; \\ & x \lt 3. \\\төгсгөл(зохицуулах)\]

Ингээд л болоо. Эцсийн хариулт: $x\in \left(-\infty ;3 \right)$.

Тогтвортой илэрхийллийг тусгаарлаж, хувьсагчийг орлуулах

Эцэст нь хэлэхэд, би бэлтгэлгүй оюутнуудад нэлээд хэцүү болсон дөрвөн экспоненциал тэгш бус байдлыг шийдэхийг санал болгож байна. Тэдгээрийг даван туулахын тулд та зэрэгтэй ажиллах дүрмийг санах хэрэгтэй. Ялангуяа нийтлэг хүчин зүйлсийг хаалтанд оруулах.

Гэхдээ хамгийн чухал зүйл бол хаалтнаас яг юу гаргаж болохыг ойлгож сурах явдал юм. Ийм илэрхийллийг тогтвортой гэж нэрлэдэг - үүнийг шинэ хувьсагчаар тэмдэглэж, улмаар экспоненциал функцээс салж болно. Тиймээс, даалгавруудыг авч үзье:

\[\эхлэх(зэрэгцүүлэх) & ((5)^(x+2))+((5)^(x+1))\ge 6; \\ & ((3)^(x))+((3)^(x+2))\ge 90; \\ & ((25)^(x+1.5))-((5)^(2x+2)) \gt 2500; \\ & ((\зүүн(0.5 \баруун))^(-4x-8))-((16)^(x+1.5)) \gt 768. \\\төгсгөл(эгц)\]

Эхний мөрөөс эхэлцгээе. Энэ тэгш бус байдлыг тусад нь бичье.

\[((5)^(x+2))+((5)^(x+1))\ge 6\]

$((5)^(x+2))=((5)^(x+1+1))=((5)^(x+1))\cdot 5$ гэдгийг анхаарна уу, тиймээс баруун гар талыг дахин бичиж болно:

Тэгш бус байдалд $((5)^(x+1))$-аас бусад экспоненциал функц байхгүй гэдгийг анхаарна уу. Ерөнхийдөө $x$ хувьсагч өөр хаана ч байхгүй тул шинэ хувьсагчийг танилцуулъя: $((5)^(x+1))=t$. Бид дараах бүтээн байгуулалтыг авна.

\[\эхлэх(зохицуулах) & 5t+t\ge 6; \\&6t\ge 6; \\ & t\ge 1. \\\төгсгөл(зохицуулах)\]

Бид анхны хувьсагч руу буцна ($t=((5)^(x+1))$), мөн тэр үед 1=5 0 гэдгийг санаарай. Бидэнд:

\[\begin(align) & ((5)^(x+1))\ge ((5)^(0)); \\ & x+1\ge 0; \\ & x\ge -1. \\\төгсгөл(зохицуулах)\]

Энэ бол шийдэл! Хариулт: $x\in \left[ -1;+\infty \right)$. Хоёр дахь тэгш бус байдал руу шилжье:

\[((3)^(x))+((3)^(x+2))\ge 90\]

Энд бүх зүйл адилхан. $((3)^(x+2))=((3)^(x))\cdot ((3)^(2))=9\cdot ((3)^(x))$ гэдгийг анхаарна уу. Дараа нь зүүн талыг дахин бичиж болно:

\[\begin(align) & ((3)^(x))+9\cdot ((3)^(x))\ge 90;\quad \left| ((3)^(x))=t \баруун. \\&t+9t\ge 90; \\ & 10т\ge 90; \\ & t\ge 9\Баруун сум ((3)^(x))\ge 9\Баруун сум ((3)^(x))\ge ((3)^(2)); \\ & x\ge 2\Баруун сум x\in \left[ 2;+\infty \баруун). \\\төгсгөл(зохицуулах)\]

Бодит туршилт, бие даасан ажлын шийдлийг ойролцоогоор ийм байдлаар гаргах хэрэгтэй.

За, илүү төвөгтэй зүйлийг туршиж үзье. Жишээлбэл, тэгш бус байдал энд байна:

\[((25)^(x+1.5))-((5)^(2x+2)) \gt 2500\]

Энд ямар асуудал байна вэ? Юуны өмнө, зүүн талын экспоненциал функцүүдийн суурь нь өөр: 5 ба 25. Гэхдээ 25 = 5 2, тиймээс эхний гишүүнийг хувиргаж болно:

\[\эхлэх(зэрэгцүүлэх) & ((25)^(x+1.5))=((\left(((5)^(2)) \баруун))^(x+1.5))= ((5) ^(2х+3)); \\ & ((5)^(2x+3))=((5)^(2x+2+1))=((5)^(2x+2))\cdot 5. \\\төгсгөл(зохицуулах) )\]

Таны харж байгаагаар эхлээд бид бүгдийг нэг суурь дээр авчирсан бөгөөд дараа нь эхний нэр томъёог хоёрдугаарт амархан буулгаж болохыг анзаарсан - та зөвхөн экспонентыг өргөжүүлэх хэрэгтэй. Одоо та шинэ хувьсагчийг аюулгүйгээр оруулж болно: $((5)^(2x+2))=t$, тэгш бус байдлыг бүхэлд нь дараах байдлаар дахин бичих болно.

\[\эхлэх(зохицуулах) & 5t-t\ge 2500; \\&4t\ge 2500; \\ & t\ge 625=((5)^(4)); \\ & ((5)^(2x+2))\ge ((5)^(4)); \\ & 2x+2\ge 4; \\&2x\ge 2; \\ & x\ge 1. \\\төгсгөл(зохицуулах)\]

Мөн дахин хэлэхэд ямар ч бэрхшээл гарахгүй! Эцсийн хариулт: $x\in \left[ 1;+\infty \right)$. Өнөөдрийн хичээлээр эцсийн тэгш бус байдал руу шилжье.

\[((\left(0.5 \баруун))^(-4x-8))-((16)^(x+1.5)) \gt 768\]

Таны анхаарах ёстой хамгийн эхний зүйл бол мэдээжийн хэрэг, аравтыннэгдүгээр зэргийн суурь дээр. Үүнээс салах шаардлагатай бөгөөд нэгэн зэрэг бүх экспоненциал функцийг нэг суурь болох "2" тоонд оруулах хэрэгтэй.

\[\эхлэх(зэрэгцүүлэх) & 0.5=\frac(1)(2)=((2)^(-1))\Баруун сум ((\зүүн(0.5 \баруун))^(-4x- 8))= ((\left(((2)^(-1)) \баруун))^(-4х-8))=((2)^(4х+8)); \\ & 16=((2)^(4))\Баруун сум ((16)^(x+1.5))=((\зүүн(((2)^(4)) \баруун))^( x+ 1.5))=((2)^(4x+6)); \\ & ((2)^(4х+8))-((2)^(4х+6)) \gt 768. \\\төгсгөл(зохицуулах)\]

Гайхалтай, бид эхний алхмыг хийлээ - бүх зүйл ижил суурь руу хөтөлсөн. Одоо та тогтвортой илэрхийлэл сонгох хэрэгтэй. $((2)^(4x+8))=((2)^(4x+6+2))=((2)^(4x+6))\cdot 4$ гэдгийг анхаарна уу. Хэрэв бид $((2)^(4x+6))=t$ шинэ хувьсагчийг оруулбал анхны тэгш бус байдлыг дараах байдлаар дахин бичиж болно.

\[\эхлэх(зохицуулах) & 4t-t \gt 768; \\ & 3t \gt 768; \\ & t \gt 256=((2)^(8)); \\ & ((2)^(4x+6)) \gt ((2)^(8)); \\ & 4x+6 \gt 8; \\ & 4x \gt 2; \\ & x \gt \frac(1)(2)=0.5. \\\төгсгөл(зохицуулах)\]

Мэдээжийн хэрэг, асуулт гарч ирж магадгүй юм: 256 = 2 8 гэдгийг бид хэрхэн олж мэдсэн бэ? Харамсалтай нь энд та хоёрын хүчийг (мөн гурав ба тавын хүчийг) мэдэх хэрэгтэй. За, эсвэл 256-г 2-оор хуваа (та хувааж болно, учир нь 256 байна тэгш тоо) үр дүнд хүрэх хүртэл. Энэ нь иймэрхүү харагдах болно:

\[\begin(align) & 256=128\cdot 2= \\ & =64\cdot 2\cdot 2= \\ & =32\cdot 2\cdot 2\cdot 2= \\ & =16\cdot 2 \cdot 2\cdot 2\cdot 2= \\ & =8\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =4\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =(2)^(8)).\төгсгөл(зэрэгцүүлэх) )\]

Гурав (9, 27, 81, 243 тоонууд нь түүний градусууд), долоо (49, 343 гэсэн тоонуудыг санахад таатай байх болно) нь мөн адил юм. Тав нь бас "сайхан" зэрэгтэй байдаг бөгөөд үүнийг та мэдэх хэрэгтэй:

\[\begin(align) & ((5)^(2))=25; \\ & ((5)^(3))=125; \\ & ((5)^(4))=625; \\ & ((5)^(5))=3125. \\\төгсгөл(зохицуулах)\]

Мэдээжийн хэрэг, хэрэв та хүсвэл эдгээр бүх тоог зүгээр л нэг нэгээр нь дараалан үржүүлснээр таны оюун ухаанд сэргэж болно. Гэсэн хэдий ч, та хэд хэдэн экспоненциал тэгш бус байдлыг шийдэх ёстой бөгөөд дараагийнх бүр нь өмнөхөөсөө илүү хэцүү байх үед таны хамгийн сүүлд бодохыг хүссэн зүйл бол зарим тоонуудын хүч юм. Энэ утгаараа эдгээр асуудлууд нь интервалын аргаар шийдэгддэг "сонгодог" тэгш бус байдлаас илүү төвөгтэй байдаг.

Энэ хичээл танд энэ сэдвийг эзэмшихэд тусалсан гэж найдаж байна. Хэрэв ямар нэг зүйл тодорхойгүй байвал сэтгэгдэл дээр асуугаарай. Тэгээд дараагийн хичээлүүд дээр уулзацгаая. :)

Экспоненциал тэгшитгэл ба тэгш бус байдал нь үл мэдэгдэх нь экспонентт агуулагддаг тэгшитгэл юм.

Экспоненциал тэгшитгэлийг шийдэх нь ихэвчлэн a x = a b тэгшитгэлийг шийдэхэд хүргэдэг бөгөөд a > 0, a ≠ 1, x нь үл мэдэгдэх юм. Дараах теорем үнэн тул энэ тэгшитгэл нь x = b язгууртай.

Теорем. Хэрэв a > 0, a ≠ 1 ба a x 1 = a x 2 байвал x 1 = x 2 болно.

Үзсэн мэдэгдлийг үндэслэлтэй болгоё.

x 1 = x 2 тэгш байдал биелэхгүй гэж үзье, өөрөөр хэлбэл. x 1< х 2 или х 1 = х 2 . Пусть, например, х 1 < х 2 . Тогда если а >1, дараа нь экспоненциал функц y = a x нэмэгдэх тул a x 1 тэгш бус байдлыг хангах ёстой.< а х 2 ; если 0 < а < 1, то функция убывает и должно выполняться неравенство а х 1 >a x 2. Аль ч тохиолдолд бид a x 1 = a x 2 нөхцөлтэй зөрчилдсөн.

Хэд хэдэн асуудлыг авч үзье.

4 ∙ 2 x = 1 тэгшитгэлийг шийд.

Шийдэл.

Тэгшитгэлийг 2 2 ∙ 2 x = 2 0 – 2 x+2 = 2 0 хэлбэрээр бичье, үүнээс x + 2 = 0, өөрөөр хэлбэл. x = -2.

Хариулт. x = -2.

2 3x ∙ 3 x = 576 тэгшитгэлийг шийд.

Шийдэл.

2 3x = (2 3) x = 8 x, 576 = 24 2 тул тэгшитгэлийг 8 x ∙ 3 x = 24 2 эсвэл 24 x = 24 2 гэж бичиж болно.

Эндээс бид x = 2 болно.

Хариулт. x = 2.

3 x+1 – 2∙3 x - 2 = 25 тэгшитгэлийг шийд.

Шийдэл.

Зүүн талын хаалтнаас 3 x - 2 нийтлэг хүчин зүйлийг авбал бид 3 x - 2 ∙ (3 3 – 2) = 25 – 3 x - 2 ∙ 25 = 25 болно.

эндээс 3 x - 2 = 1, өөрөөр хэлбэл. x – 2 = 0, x = 2.

Хариулт. x = 2.

3 x = 7 x тэгшитгэлийг шийд.

Шийдэл.

7 x ≠ 0 тул тэгшитгэлийг 3 x /7 x = 1 гэж бичиж болно, үүнээс (3/7) x = 1, x = 0 байна.

Хариулт. x = 0.

9 x – 4 ∙ 3 x – 45 = 0 тэгшитгэлийг шийд.

Шийдэл.

3 x = a-г орлуулснаар өгөгдсөн тэгшитгэл a 2 – 4a – 45 = 0-ийг квадрат тэгшитгэл болгон бууруулна.

Энэ тэгшитгэлийг шийдэж, бид түүний үндсийг олно: a 1 = 9, ба 2 = -5, үүнээс 3 x = 9, 3 x = -5.

Экспоненциал функц сөрөг утгыг авч чадахгүй тул 3 x = 9 тэгшитгэл нь 2 үндэстэй, 3 x = -5 тэгшитгэл нь үндэсгүй.

Хариулт. x = 2.

Экспоненциал тэгш бус байдлыг шийдэх нь ихэвчлэн a x > a b эсвэл a x тэгш бус байдлыг шийдэхэд хүргэдэг.< а b . Эти неравенства решаются с помощью свойства возрастания или убывания показательной функции.

Зарим асуудлыг авч үзье.

3 x тэгш бус байдлыг шийд< 81.

Шийдэл.

Тэгш бус байдлыг 3 x хэлбэрээр бичье< 3 4 . Так как 3 >1 бол y = 3 x функц нэмэгдэж байна.

Тиймээс x-ийн хувьд< 4 выполняется неравенство 3 х < 3 4 , а при х ≥ 4 выполняется неравенство 3 х ≥ 3 4 .

Тиймээс x дээр< 4 неравенство 3 х < 3 4 является верным, а при х ≥ 4 – неверным, т.е. неравенство
3 x< 81 выполняется тогда и только тогда, когда х < 4.

Хариулт. X< 4.

16 x +4 x – 2 > 0 тэгш бус байдлыг шийд.

Шийдэл.

4 x = t гэж тэмдэглээд t2 + t – 2 > 0 квадрат тэгш бус байдлыг олж авна.

Энэ тэгш бус байдал нь t-д хамаарна< -2 и при t > 1.

t = 4 x тул бид 4 x хоёр тэгш бус байдлыг олж авна< -2, 4 х > 1.

Бүх x € R-д 4 x > 0 байх тул эхний тэгш бус байдлын шийдэл байхгүй.

Хоёрдахь тэгш бус байдлыг бид 4 x > 4 0 хэлбэрээр бичнэ, эндээс x > 0 байна.

Хариулт. x > 0.

(1/3) x = x – 2/3 тэгшитгэлийг графикаар шийд.

Шийдэл.

1) y = (1/3) x ба y = x – 2/3 функцуудын графикийг байгуулъя.

2) Бидний зураг дээр үндэслэн авч үзсэн функцүүдийн графикууд абсцисса х ≈ 1 цэг дээр огтлолцдог гэж дүгнэж болно. Шалгах нь үүнийг баталж байна.

x = 1 нь энэ тэгшитгэлийн үндэс юм:

(1/3) 1 = 1/3 ба 1 – 2/3 = 1/3.

Өөрөөр хэлбэл бид тэгшитгэлийн нэг язгуурыг олсон гэсэн үг.

3) Өөр үндсийг олъё, эсвэл байхгүй гэдгийг баталъя. (1/3) х функц буурч, y = x – 2/3 функц нэмэгдэж байна. Тиймээс, x > 1-ийн хувьд эхний функцын утга 1/3-аас бага, хоёр дахь нь 1/3-аас их байна; x дээр< 1, наоборот, значения первой функции больше 1/3, а второй – меньше 1/3. Геометрически это означает, что графики этих функций при х >1 ба x< 1 «расходятся» и потому не могут иметь точек пересечения при х ≠ 1.

Хариулт. x = 1.

Энэ асуудлын шийдлээс харахад (1/3) x > x – 2/3 тэгш бус байдал x-ийн хувьд хангагдана гэдгийг анхаарна уу.< 1, а неравенство (1/3) х < х – 2/3 – при х > 1.

вэб сайт, материалыг бүрэн эсвэл хэсэгчлэн хуулахдаа эх сурвалжийн холбоос шаардлагатай.

"Экспоненциал тэгшитгэл ба экспоненциал тэгш бус байдал" сэдвээр хичээл, танилцуулга

Нэмэлт материал
Эрхэм хэрэглэгчид, сэтгэгдэл, сэтгэгдэл, хүслээ үлдээхээ бүү мартаарай! Бүх материалыг вирусны эсрэг програмаар шалгасан.

11-р ангийн Integral онлайн дэлгүүрт заах хэрэгсэл, симуляторууд
9-11-р ангийн "Тригонометр" интерактив гарын авлага
10-11-р ангийн "Логарифм" интерактив гарын авлага

Экспоненциал тэгшитгэлийн тодорхойлолт

Залуус аа, бид экспоненциал функцийг судалж, тэдгээрийн шинж чанарыг мэдэж, графикуудыг барьж, экспоненциал функцүүд олдсон тэгшитгэлийн жишээнд дүн шинжилгээ хийсэн. Өнөөдөр бид экспоненциал тэгшитгэл ба тэгш бус байдлыг судлах болно.

Тодорхойлолт. Хэлбэрийн тэгшитгэлүүд: $a^(f(x))=a^(g(x))$, $a>0$, $a≠1$-г экспоненциал тэгшитгэл гэнэ.

"Экспоненциал функц" сэдвээр судалсан теоремуудыг эргэн санавал бид шинэ теоремыг танилцуулж болно.
Теорем. $a^(f(x))=a^(g(x))$ экспоненциал тэгшитгэл нь $a>0$, $a≠1$ нь $f(x)=g(x) тэгшитгэлтэй тэнцүү байна. доллар.

Экспоненциал тэгшитгэлийн жишээ

Жишээ.
Тэгшитгэлийг шийдэх:
a) $3^(3х-3)=27$.
б) $((\frac(2)(3)))^(2x+0.2)=\sqrt(\frac(2)(3))$.
в) $5^(x^2-6x)=5^(-3x+18)$.
Шийдэл.
a) Бид $27=3^3$ гэдгийг сайн мэднэ.
Тэгшитгэлээ дахин бичье: $3^(3x-3)=3^3$.
Дээрх теоремыг ашиглан бидний тэгшитгэл $3x-3=3$ тэгшитгэлд буурдаг болохыг олж харвал бид $x=2$ болно.
Хариулт: $x=2$.

B) $\sqrt(\frac(2)(3))=((\frac(2)(3)))^(\frac(1)(5))$.
Дараа нь бидний тэгшитгэлийг дахин бичиж болно: $((\frac(2)(3)))^(2x+0.2)=((\frac(2)(3)))^(\frac(1)(5) ) =((\ frac(2)(3)))^(0.2)$.
$2х+0,2=0,2$.
$x=0$.
Хариулт: $x=0$.

C) Анхны тэгшитгэл нь тэгшитгэлтэй тэнцүү байна: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ ба $x_2=-3$.
Хариулт: $x_1=6$ ба $x_2=-3$.

Жишээ.
Тэгшитгэлийг шийд: $\frac(((0.25))^(x-0.5))(\sqrt(4))=16*((0.0625))^(x+1)$.
Шийдэл:
Цуврал үйлдлүүдийг дараалан хийж, тэгшитгэлийнхээ хоёр талыг ижил суурьтай болгоцгооё.
Зүүн талд хэд хэдэн үйлдлийг хийцгээе:
1) $((0.25))^(x-0.5)=((\frac(1)(4)))^(x-0.5)$.
2) $\sqrt(4)=4^(\frac(1)(2))$.
3) $\frac(((0.25))^(x-0.5))(\sqrt(4))=\frac(((\frac(1)(4)))^(x-0 ,5)) (4^(\frac(1)(2)))= \frac(1)(4^(x-0.5+0.5))=\frac(1)(4^x) =((\frac(1)) (4)))^x$.
Баруун тал руугаа явцгаая:
4) $16=4^2$.
5) $((0.0625))^(x+1)=\frac(1)((16)^(x+1))=\frac(1)(4^(2x+2))$.
6) $16*((0.0625))^(x+1)=\frac(4^2)(4^(2x+2))=4^(2-2x-2)=4^(-2x )= \frac(1)(4^(2x))=((\frac(1)(4)))^(2x)$.
Анхны тэгшитгэл нь тэгшитгэлтэй тэнцүү байна:
$((\ frac(1)(4)))^x=((\frac(1)(4)))^(2x)$.
$x=2x$.
$x=0$.
Хариулт: $x=0$.

Жишээ.
Тэгшитгэлийг шийд: $9^x+3^(x+2)-36=0$.
Шийдэл:
Тэгшитгэлээ дахин бичье: $((3^2))^x+9*3^x-36=0$.
$((3^x))^2+9*3^x-36=0$.
Хувьсагчийн өөрчлөлтийг $a=3^x$ гэж үзье.
Шинээр хувьсах тэгшитгэлдараах хэлбэрийг авна: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ ба $a_2=3$.
Хувьсагчийн урвуу өөрчлөлтийг хийцгээе: $3^x=-12$ ба $3^x=3$.
Сүүлийн хичээл дээр бид экспоненциал илэрхийлэл нь зөвхөн эерэг утгыг авч болохыг олж мэдсэн тул графикийг санаарай. Энэ нь эхний тэгшитгэлд шийдэл байхгүй, хоёр дахь тэгшитгэл нь нэг шийдэлтэй байна: $x=1$.
Хариулт: $x=1$.

Экспоненциал тэгшитгэлийг хэрхэн шийдвэрлэх талаар сануулъя:
1. График арга.Бид тэгшитгэлийн хоёр талыг функц хэлбэрээр илэрхийлж, тэдгээрийн графикийг байгуулж, графикуудын огтлолцлын цэгүүдийг олдог. (Бид энэ аргыг сүүлийн хичээл дээр ашигласан).
2. Шалгуур үзүүлэлтүүдийн тэгш байдлын зарчим.Энэ зарчим нь хоёр илэрхийлэлд суурилдаг ижил үндэслэлээрЭдгээр суурийн зэрэг (заагч) тэнцүү байвал тэнцүү байна. $a^(f(x))=a^(g(x))$ $f(x)=g(x)$.
3. Хувьсах солих арга. Энэ аргаХэрэв тэгшитгэл нь хувьсагчийг орлуулахдаа түүний хэлбэрийг хялбарчилж, шийдвэрлэхэд илүү хялбар байвал үүнийг ашиглах нь зүйтэй.

Жишээ.
Тэгшитгэлийн системийг шийд: $\begin (тохиолдлууд) (27)^y*3^x=1, \\ 4^(x+y)-2^(x+y)=12. \төгсгөл (тохиолдлууд)$.
Шийдэл.
Системийн хоёр тэгшитгэлийг тусад нь авч үзье.
$27^y*3^x=1$.
$3^(3y)*3^x=3^0$.
$3^(3y+x)=3^0$.
$x+3y=0$.
Хоёр дахь тэгшитгэлийг авч үзье.
$4^(x+y)-2^(x+y)=12$.
$2^(2(x+y))-2^(x+y)=12$.
Хувьсагчдыг өөрчлөх аргыг ашиглая $y=2^(x+y)$.
Дараа нь тэгшитгэл нь дараах хэлбэртэй болно.
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ ба $y_2=-3$.
Анхны хувьсагч руу шилжье, эхний тэгшитгэлээс $x+y=2$ гарна. Хоёр дахь тэгшитгэлд шийдэл байхгүй. Дараа нь манай анхны системтэгшитгэлүүд нь системтэй тэнцүү байна: $\begin (тохиолдлууд) x+3y=0, \\ x+y=2. \төгсгөл (тохиолдлууд)$.
Эхний тэгшитгэлээс хоёр дахьыг хасаад бид дараахийг авна: $\begin (тохиолдлууд) 2y=-2, \\ x+y=2. \төгсгөл (тохиолдлууд)$.
$\эхлэх (тохиолдлууд) y=-1, \\ x=3. \төгсгөл (тохиолдлууд)$.
Хариулт: $(3;-1)$.

Экспоненциал тэгш бус байдал

Тэгш бус байдал руу шилжье. Тэгш бус байдлыг шийдвэрлэхдээ зэрэглэлийн үндэслэлд анхаарлаа хандуулах хэрэгтэй. Тэгш бус байдлыг шийдвэрлэх үед үйл явдлын хөгжлийн хоёр хувилбар байж болно.

Теорем. Хэрэв $a>1$ бол экспоненциал тэгш бус байдал $a^(f(x))>a^(g(x))$ нь $f(x)>g(x)$ тэгш бус байдалтай тэнцүү байна.
Хэрэв $0 a^(g(x))$ нь $f(x) тэгш бус байдалтай тэнцүү

Жишээ.
Тэгш бус байдлыг шийдэх:
a) $3^(2x+3)>81$.
b) $((\frac(1)(4)))^(2x-4) c) $(0.3)^(x^2+6x)≤(0.3)^(4x+15)$ .
Шийдэл.
a) $3^(2x+3)>81$.
$3^(2x+3)>3^4$.
Бидний тэгш бус байдал нь тэгш бус байдалтай тэнцүү байна:
$2x+3>4$.
$2x>1$.
$x>0.5$.

B) $((\frac(1)(4)))^(2x-4) $((\frac(1)(4)))^(2x-4) Манай тэгшитгэлд суурь нь градус байх үед юм. 1-ээс бага бол тэгш бус байдлыг ижил тэгш бусаар солихдоо тэмдгийг өөрчлөх шаардлагатай.
$2х-4>2$.
$x>3$.

C) Бидний тэгш бус байдал нь тэгш бус байдалтай тэнцүү байна:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Интервал шийдлийн аргыг ашиглая:
Хариулт: $(-∞;-5]U)

Холбоотой нийтлэлүүд

  • Камерын механизмын динамик синтез Кам механизмын хөдөлгөөний синусоид хуулийн жишээ

    Камер механизм нь гаралтын холбоосыг тогтвортой байлгах чадвартай, өндөр кинематик хостой механизм бөгөөд бүтэц нь хувьсах муруйлттай ажлын гадаргуутай дор хаяж нэг холбоосыг агуулдаг. Камер механизмууд...

  • Дайн эхлээгүй байна. Глаголев FM подкаст бүх шоу

    Михаил Дурненковын “Дайн хараахан эхлээгүй байна” жүжгээс сэдэвлэсэн Семён Александровскийн жүжгийг Практика театрт тавьсан. Алла Шендерова мэдээлэв. Сүүлийн хоёр долоо хоногт энэ нь Михаил Дурненковын зохиолоос сэдэвлэсэн хоёр дахь Москвагийн нээлт юм....

  • "Dhow дахь арга зүйн өрөө" сэдэвт илтгэл

    | Сургуулийн өмнөх боловсролын байгууллагын оффисын тохижилт Олон улсын театрын жилийн “Шинэ жилийн оффисын чимэглэл” төслийн хамгаалалт Энэ нь 1-р сард А.Барто Сүүдрийн театрт Таяг: 1. Том дэлгэц (төмөр бариул дээрх хуудас) 2. Гэрэл нүүр будалтын уран бүтээлчид...

  • Ольга Орост хаанчилж байсан огноо

    Ханхүү Игорийг хөнөөсөний дараа Древлянчууд одооноос эхлэн овог нь эрх чөлөөтэй болж, Киев Руст алба гувчуур төлөх шаардлагагүй гэж шийджээ. Түүгээр ч барахгүй тэдний хунтайж Мал Ольгатай гэрлэхийг оролдов. Ийнхүү тэрээр Киевийн хаан ширээг булаан авахыг хүсч, дангаараа...

  • үнэгүй, бүртгэлгүйгээр татаж авах

    Үндэс дэх О – А үсэг -РАСТ-, -РАШ-, -РОСТ- 5-р ангийн орос хэлний хичээлийг Нижне-Солотинская ООШ-ын орос хэл, уран зохиолын багш Н.А.Локтионова бэлтгэв.

  • Мэдэх зорилго: О – А эгшиг ямар тохиолдолд...

    Илтгэл - Үлгэр гэж юу вэ?