Механизм радикальной цепной полимеризации стирола. Радикальная полимеризация: механизм, кинетика и термодинамика. Мономеры для радикальной полимеризации

Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся винильные мономеры: этилен, винилхлорид, винилацетат, винилиденхлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол и диеновые мономеры (бутадиен, изопрен, хлоропренидр.).

Радикальной полимеризации свойственны все признаки цепных реакций, известных в химии низкомолекулярных соединений (например, взаимодействие на свету хлора и водорода). Такими признаками являются: резкое влияние незначительного количества примесей на скорость процесса, наличие индукционного периода и проте­кание процесса через последовательность трех зависящих друг от друга стадий - образование активного центра (свободного радикала), рост цепи и обрыв цепи. Принципиальное отличие полимеризации от простых цепных реакций заключается в том, что на стадии роста кинетическая цепь воплощается в материальную цепь растущего макрорадикала, и эта цепь растет до образования макромолекулы полимера.

Инициирование радикальной полимеризации сводится к созданию в реакционной среде свободных радикалов, способных начать реакционные цепи. Стадия инициирования включает две реакции: возникновение первичных свободных радикалов инициатора R* (1а) и взаимодействие свободного радикала с молекулой мономера (16) с образованием радикала М*:

Реакция (1б) протекает во много раз быстрее, чем реакция (1а). Поэтому скорость инициирования полимеризации определяет реакция (1а), в результате которой генерируются свободные радикалы R*. Свободные радикалы, представляющие собой частицы с неспаренным электроном, могут образовываться из молекул под влиянием физического воздействия - теплоты, света, проникающей радиации, когда в них накапливается энергия, достаточная для разрыва π-связи. В зависимости от вида физического воздействия на мономер при инициировании (образование первичного радикала М*) радикальную полимеризацию подразделяют на термическую, радиационную и фотополимеризацию. Кроме того, инициирование может осуществляться за счет распада на радикалы специально вводимых в систему веществ - инициаторов. Этот способ называется вещественным инициированием.

Термическое инициирование заключается в самоинициировании при высоких тем­пературах полимеризации чистых мономеров без введения в реакционную среду специальных инициаторов. В этом случае образование радикала происходит, как правило, вследствие разложения небольших количеств пероксидных примесей, которые могут возникать при взаимодействии мономера с кислородом воздуха. На практике таким путем получают так называемый блочный полистирол. Однако широкого распространения метод термического инициирования полимеризации не нашел, поскольку он требует больших затрат тепловой энергии, а скорость полимеризации в большинстве случаев невелика. Ее можно увеличить, повышая температуру, но при этом снижается молекулярная масса образующегося полимера.

Фотоинициирование полимеризации происходит при освещении мономера светом ртутной лампы, при котором молекула мономера поглощает квант света и переходит в возбужденное энергетическое состояние. Соударяясь с другой молекулой мо­номера, она дезактивируется, передавая последней часть своей энергии, при этом обе молекулы превращаются в свободные радикалы. Скорость фотополимеризации рас­тет с увеличением интенсивности облучения и, в отличие от термической полимери­зации, не зависит от температуры.

Радиационное инициирование полимеризации в принципе аналогично фотохимическому. Радиационное инициирование состоит в воздействии на мономеры излучений высокой энергии (γ-лучи, быстрые электроны, α- частицы, нейтроны и др.). Преимуществом фото- и радиационно-химического способов инициирования является возможность мгновенного «включения и выключения» излучения, а также проведение полимеризации при низких температурах.

Однако все эти способы технологически сложны и могут сопровождаться протеканием в получаемых полимерах побочных нежелательных реакций, например деструкции. Поэтому на практике чаще всего используют химическое (вещественное) инициирование полимеризации.

Химическое инициирование осуществляется введением в среду мономера низко­молекулярных нестойких веществ, имеющих в своем составе связи с низкой энергией - инициаторов, легко распадающихся на свободные радикалы под влиянием теплоты или света. Наиболее распространенными инициаторами радикальной полимеризации являются пероксиды и гидропероксиды (пероксид водорода, перок- сид бензоила, гидропероксиды mpem -бутила и изопропилбензола и др.), азо- и диазосоединения (динитрил азобисизомасляной кислоты, диазоаминобензол и др.), персульфаты калия и аммония. Ниже представлены реакции распада некоторых инициаторов.

Пероксид трет-бутила (алкилпероксид):



Активность и возможность применения инициаторов радикальной полимеризации определяется скоростью их разложения, которая зависит от температуры. Выбор конкретного инициатора обусловливается той температурой, которая необходима для проведения синтеза полимера. Так, динитрил азобисизомасляной кислоты применяют при 50-70 °С, пероксид бензоила - при 80-95°С, а пероксид трет-бутила - при 120-140°С.

Эффективными инициаторами, позволяющими проводить процесс радикальной полимеризации при комнатной и пониженной температурах, являются окислительно-восстановительные системы. В качестве окислителей используют обычно пероксиды, гидропероксиды, персульфаты и др. Восстановителями являются соли металлов переменной валентности (Fe, Со, Сu) в низшей степени окисления, сульфиты, амины и др.

Реакция окисления-восстановления проходит в среде, содержащей мономер, с образованием инициирующих полимеризацию свободных радикалов. Можно подобрать пары окислитель-восстановитель, растворимые в воде (например, пероксид водорода-сульфат железа (II)) или в органических растворителях (например, пероксид бензоила - диметиланилин). В соответствии с этим радикальную полимеризацию можно инициировать как в водных, так и в органических средах. Например, распад пероксида водорода в присутствии солей железа (II) может быть представлен следу­ющими уравнениями:

Радикалы НО* и НОО*, присоединяясь к молекуле мономера, инициируют радикальную полимеризацию.

Рост цепи осуществляется последовательным присоединением молекул мономера к радикалам (2), возникшим при реакции (1б), например:

В цепном процессе радикальной полимеризации рост кинетической цепи происходит практически мгновенно с образованием материальной цепи макрорадикала и заканчивается ее обрывом.

Обрыв цепи представляет собой процесс прекращения роста кинетической и материальной цепей. Он приводит к исчезновению в системе активных радикалов или к замене их малоактивными радикалами, не способными присоединять молекулы мономера. На стадии обрыва образуется макромолекула полимера. Обрыв цепи может происходить по двум механизмам:

1) два растущих макрорадикала, соударяясь, соединяются друг с другом в единую цепь, то есть рекомбинируют (За);

2) макрорадикалы, соударяясь, превращаются в две макромолекулы, причем один из них отдавая протон, превращается в макромолекулу с двойной С=С-связью на конце, а другой, принимая протон, образует макромолекулу с простой концевой С-С-связью; такой механизм называют диспропорционированием (3б):

При обрыве цепей рекомбинацией остатки инициатора находятся на обоих концах макромолекулы; при обрыве цепей диспропорционированием - на одном конце.

По мере роста цепей макрорадикалов увеличивается вязкость системы и уменьшается их подвижность, вследствие чего обрыв цепей затрудняется и общая скорость полимеризации возрастает. Это явление известно как гель-эффект. Гель-эффект обусловливает повышенную полидисперсность полимеров, что обычно приводит к ухудшению их механических свойств. Ограничение материальных цепей при ради­кальной полимеризации может происходить также путем присоединения макрора­дикала к первичному радикалу (обрыв на инициаторе) и в результате реакций передачи цепи.

Передача цепи заключается в отрыве растущим макрорадикалом подвижного атома от молекулы какого-либо вещества - растворителя, мономера, полимера, примесей. Эти вещества называются передатчиками цепи. В результате макрорадикал превращается в валентно-насыщенную макромолекулу и образуется новый радикал, способный к продолжению кинетической цепи. Таким образом, при реакциях передачи материальная цепь обрывается, а кинетическая - нет.

Реакцию передачи цепи на растворитель (например, четыреххлористый углерод) можно представить следующим образом:

Образующиеся при этом из молекул растворителя свободные радикалы могут присоединять молекулы мономера, то есть продолжать кинетическую цепь:

Если их активность отличается от активности первичных радикалов, то изменяется и скорость полимеризации.

При передаче цепи на полимер образуются разветвленные макромолекулы:

Вероятность передачи цепи на полимер возрастает при высокой конверсии мономера, когда концентрация макромолекул в системе велика.

Роль агента передачи цепи в некоторых случаях может играть сам мономер, если его молекулы содержат подвижный атом водорода. В таком случае растущий радикал не присоединяет к себе новую молекулу мономера по двойной связи, а отрывает у нее подвижный атом водорода, насыщая свою свободную валентность и одновременно превращая молекулу мономера в мономерный радикал. Это имеет место при полимеризации винилацетата:

Реакции передачи цепи па растворитель лежат в основе получения теломеров. Если полимеризацию какого-либо мономера проводить при высоких концентрациях растворителя, молекулы которого содержат подвижные атомы водорода или галогена, то продуктом реакции будут вещества с невысокой молекулярной массой, состоящие из нескольких мономерных звеньев, содержащих по концам фрагменты молекул растворителя. Эти вещества называют теломерами, а реакцию их получения - теломеризацией.

Реакции передачи цепи могут быть использованы для регулирования молекулярной массы полимеров и даже для предотвращения их образования. Этим широко пользуются на практике, часто применяя при полимеризации передатчики-регуляторы цепи, а при хранении мономеров - ингибиторы.

Регуляторы цепи - это вещества, которые обрывая растущие цепи полимера, практически не влияют при этом на общую скорость процесса. Типичными регуляторами цепи являются меркаптаны, содержащие подвижный атом водорода в меркаптогруппе. Передачу цепи на них можно представить следующим образом:

Полимеры, синтезированные в присутствии регуляторов цепи, отличаются оптимальным для переработки значением средней молекулярной массы и ММР.

Ингибиторы - это вещества, которые обрывают растущие цепи полимера, превращаясь при этом в соединения, не способные инициировать полимеризацию. В качестве ингибиторов обычно используют вещества, передача цепи на которые приводит к образованию неактивных (стабильных) радикалов. На практике для ингибирования радикальной полимеризации и хранения мономеров часто применяют гидрохинон, бензохинон, ароматические амины, нитробензол.

Полимеризация

Полимеризация - это процесс получения высокомолекулярных соединений, при котором рост молекулярной цепи происходит в результате последовательного присоединения молекул низкомолекулярного вещества (мономера) к активному центру, локализованному на ее конце:

М i М* + М М i+1 М* и т. д.

где М i -цепь длиной в i звеньев; М* -- активный центр; М -- молекула мономера

По числу мономеров, участвующих в полимеризации, различают гомополимеризацию (один мономер) и сополимеризацию (два или более мономера).

В зависимости от химической природы активных Центров, участвующих в образовании молекулярных цепей (радикал или ион), различают радикальную и ионную полимеризации.

Радикальная полимеризация

Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся: этилен, винилхлорид, винилацетат, винилиденхлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол, бутадиен, хлоропрен и другие мономеры. Радикальная полимеризация обычно включает несколько элементарных химических стадий: инициирование, рост цепи, обрыв цепи и: передачу цепи. Обязательными стадиями являются инициирование и рост цепи.

Инициирование . Инициирование состоит в создании в реакционной.системе свободных радикалов, способных начинать реакцйонные цепи. Наиболее распротраненный метод инициирования полимеризации основан на проведении в среде мономера термического гомолитического разложения нестойких веществ - инициаторов . В качестве инициаторов широко используют различные типы пероксидов: диалкилпероксиды (пероксид ди-трет -бутила), гидропероксиды (гидропероксид кумила), перэфиры (трет -бутилпербензоат), ацилпероксид (пероксид бензоила) и др. Пероксиды, например, при нагревании распадаются по схеме полимеризация мономер стирол сополимер

Кроме пероксидов в качестве инициаторов широко используют азосоединения, из которых наибольшее распространение получил 2,2"-азобисизобутиронитрил (АИБН):

Инициаторы радикальной полимеризации обычно не отличаются селективным действием по отношению к различным мономерам, поэтому выбор инициатора чаще всего обусловливается температурой, при которой в каждом конкретном случае может быть достигнута желаемая скорость генерирования свободных радикалов. Так, АИБН применяют при 50--70 °С, пероксид бензоила при 80--95 о С, а пероксид трет -бутила при 120--140°С. Энергия активации инициирования обычно близка к энергии связи, разрывающейся при распаде инициаторов. и колеблется от 105 до 175 кДж/моль. Радикал, образующийся при распаде молекулы инициатора, присоединяется к двойной связи мономера и начинает реакционную цепь:

R* + СН 2 =СНХ R--СН 2 -СНХ*

Для инициирования радикальной полимеризации при комнатной или пониженной температуре могут быть использованы окислительно-восстановительные системы. Реакцию окисления -- восстановления проводят в среде, содержащей мономер. Полимеризацию вызывают свободные радикалы, образующиеся в качестве промежуточных продуктов реакции. Можно подобрать пары окислитель--восстановитель, растворимые в воде (пероксид водорода - сульфат двухвалентного железа; персульфат натрия -- тиосульфат натрия и др.) или в органических растворителях (органические пероксиды -- амины; органические пероксиды -- органические соли двухвалентного железа и др.). В соответствии с этим радикальную полимеризацию можно инициировать как в водных, так и в органических средах.

Типичный пример окислительно-восстановительной реакции в водной среде -- взаимодействие пероксида водорода с ионами двухвалентного железа:

Fe +2 + H 2 O 2 Fe +3 + ОН - + НО*

Радикал НО, присоединяясь к молекуле мономера, инициирует радикальную полимеризацию.

Примером окислительно-восстановительной реакции, инициирующей радикальную полимеризацию в органических средах, может служить взаимодействие пероксида бензоила с метиланилином:

Фотохимическое инициирование радикальной полимеризации основано на образовании свободных радикалов в результате гомолитического разрыва химических связей при поглощении кванта инициирующего излучения мономером либо специально введёнными фотоинициаторами или фотосенсабилизаторами.

При радиационно-химическом инициировании радикальной полимеризации используются излучения высокой энергии (-лучи, быстрые электроны, -частицы, нейтроны и др.). Энергия активации фотохимического и радиационно-химического инициирования близка к нулю. Особенностью двух последних способов инициирования является возможность мгновенного включения и выключения облучающего излучения, что важно при некоторых исследовательских работах.

Рост цепи . Рост цепи осуществляется последовательным присоединением молекул мономера к радикалам, возникающим в результате инициирования, например:

С 6 Н 5 -С(О)-О-СН 2 -СНХ* + СН 2 =СНХ

С 6 Н 5 -С(О)-О-CH 2 -CHX-CH 2 -СНХ*

С 6 Н 5 -С(О)-О-СН 2 -СНХ-СН 2 -СНХ + СН 2 =СНХ*

С 6 Н 5 -С(О)-О-СН 2 -СНХ-СН 2 -СНХ-СН 2 -СНХ*

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .

С 6 Н 5 -С(О)-О-(СН 2 -СНХ) n -СН 2 -СНХ* + СН 2 =СНХ

С 6 Н 5 -С(О)-О-(СН 2 -СНХ) n+1 -СН 2 -СНХ* и т. д.

где k p -- константа скорости роста цепи.

Развитие кинетической цепи сопровождается образованием материальной цепи. Энергии активации реакций роста цепи лежат в пределах 12-40 кДж/моль.

Константы скорости и энергия активации роста цепи в первую очередь зависят от природы мономера. Растворители, не склонные к специфическому взаимодействию с молекулами мономера и растущими радикалами, не влияют на реакцию роста радикальной полимеризации.

Точный квантовохимический расчет энергий активации присоединения радикалов к двойным связям мономеров в большинстве случаев затруднителен. Однако использование полуэмпирического Правила Эванса - Поляни - Семенова, согласно которому энергия активации Е а связана с тепловым эффектом элементарной реакции Q соотношением Е а = A - Q (где A и - постоянные величины для аналогичных рядов), позволяет во. многих случаях оценить Е а и предсказать ее изменение в ряду однотипных мономеров.

Энергия активации присоединения мономера к радикалу тем ниже, т. е. мономер тем активнее, чем выше энергия сопряжения в радикале, который получается в результате присоединения этого мономера к исходному радикалу. Наоборот, энергия активации присоединения радикала к двойной связи тем ниже, т. е. реакционная способность радикала тем выше, чем ниже его энергия сопряжения. Таким образом, реакционные способности в ряду мономеров и соответствующих им радикалов изменяются антибатно. Например, реакционная способность в ряду виниловых мономеров с заместителями

С 6 Н 5 , -СН=СН 2 , -СОСН 3 , -СN, -СООR, CR, -OCOCH 3 , -OR

уменьшается слева направо. Реакционная способность соответствующих радикалов уменьшается справа налево. Поэтому, чем выше реакционная способность мономера, тем выше энергия активации реакции роста цепи, т. е. тем ниже скорость его радикальной полимеризации.

В приведённом кратком качественном рассмотрении не учтены полярные и пространственные эффекты, которые в ряде случаев оказывают существенное влияние на энергии активации радикальных процессов. Теория, рассматривающая реакционную способность мономеров и радикалов только с учетом, энергий сопряжения и не учитывающая полярных и пространственных эффектов, называется теорией идеальной радикальной реакционной способности .

Обрыв цепи . Реакции, ограничивающие кинетические и активационные цепи, называются реакциями обрыва. Обрыв приводит к исчезновению в системе активных радикалов или к замене их малоактивными радикалами, неспособными присоединять молекулы мономера. Обрыв цепи при радикальной полимеризации в основном происходит при взаимодействии двух растущих радикалов в результате их рекомбинации :

~CH 2 -CHX* + ~CH 2 -CHX* ~СН 2 -СНХ-СНХ-СН 2 ~

или диспропорционирования :

~CH 2 -CHX* + ~CH 2 -CHX* ~СН 2 -СН 2 Х + ~СН=СНХ

Реакция обрыва цепи включает поступательную диффузию макрорадикалов с образованием объединенного клубка, взаимное сближение активных концевых звеньев за счет сегментальной диффузии внутри объединенного клубка и непосредственное химическое взаимодействие реакционных центров с образованием «мертвых» макромолекул.

Энергия активации обрыва не превышает 6 кДж/моль и в основном определяется энергией активации взаимной диффузии радикалов.

Обрыв цепи может происходить при любой длине растущего макрорадикала. Поэтому при полимеризации образуются макромолекулы разной длины (разной степени полимеризации ). Этим объясняется полимолекулярность синтетических полимеров, описываемая соответствующими молекулярно-массовыми распределениями .

Цепи могут обрываться также при взаимодействии, радикалов с ингибиторами . В качестве ингибиторов могут использоваться малоактивные стабильные свободные радикалы, например дифенилпикрилгидразил, N-оксидные радикалы, которые сами не инициируют полимеризацию, но рекомбинируют или диспропорционируют с растущими радикалами. Ингибиторами могут служить также вещества, молекулы которых, взаимодействуя с активными радикалами, насыщают их свободные валентности, а сами превращаются в малоактивные радикалы. К числу последних относятся хиноны (например, бензохинон, дурохинон), ароматические ди- и тринитросоединения (динитробензол, тринитробензол), молекулярный кислород, сера и др. Ингибиторами могут быть также соединения металлов переменной валентности (соли трехвалентного железа, двухвалентной меди и др.), которые обрывают растущие цепи за счет окислительно-восстановительных реакций. Часто ингибиторы вводят в мономер для предотвращения их преждевременной полимеризации. Поэтому перед полимеризацией каждый мономер необходимо тщательно очищать от примесей и добавленного ингибитора.

Передача цепи . Ограничение материальных цепей при полимеризации может происходить не только путем реакции обрыва, но и в результате реакций передачи цепи, которые весьма характерны для радикальной полимеризации. При передаче цепи происходит отрыв растущим радикалом атома или группы атомов от какой-либо молекулы (передатчика цепи ). В результате радикал превращается в валентнонасыщенную молекулу и образуется новый радикал, способный к продолжению кинетической цепи. Таким образом, при реакциях передачи материальная цепь обрывается, а кинетическая - нет.

Передача цепи может осуществляться через молекулы мономера. Например, в случае винилацетата

~R* + СН2=СН-OCOCH 3 ~RH + СН 2 =СН-ОСОСН 2 *

где k M -- константа скорости передачи цепи на мономер.

При этом растущий радикал вместо того, чтобы присоединиться по двойной связи молекулы винилацетата, может оторвать один из атомов водорода ацетильной группы, насыщая свою свободную валентность и превращая молекулу мономера в активный радикал. Последний может реагировать с другой молекулой мономера, начиная рост новой макромолекулы:

СН2=СН-ОСОСН 2 *+ СН 2 =СН-ОСОСН 3 СН 2 =СН-ОСОСН 2 -СН 2 -СН*-ОСОСН 3

Способность молекул мономеров участвовать в реакции передачи цепи принято характеризовать константой самопередачи С М, равной отношению константы скорости передачи цепи на мономер. (k M) к константе скорости роста цепи (k P), т. е. С М = k M /k P . Для большинства мономеров винилового ряда, не содержащих подвижных групп или атомов, k M <

В присутствии растворителя роль передатчика цепи могут играть молекулы растворителя, например в случае толуола

~СН 2 -СНХ* + С 6 Н 5 СН 3 ~СН 2 -СН 2 Х + С 6 Н 5 СН 2 *

где k S --константа скорости передачи цепи.

Взаимодействие растущего радикала с молекулой передатчика цепи приводит к прекращению роста данной материальной цепи, т. е. снижает молекулярную массу образующегося полимера. Способность растворителей участвовать в передаче цепи при радикальной полимеризации данного мономера характеризуют константой передачи C S = k S /k P (табл.1). Реакции передачи цепи широко используются при синтезе полимеров для регулирования их молекулярных масс. Для уменьшения молекулярной массы синтезируемого полимера обычно применяют передатчики со значениями C S > 10 -3 , которые называют регуляторами , например

~СН 2 --СНХ + СС1 4 ~СН 2 --CHXCI + СС1 3 *

Таблица 1. Константы передачи цепи при радикальной полимеризации стирола при 60 оС.

Кинетика радикальной полимеризации . Скорость инициирования в присутствии распадающихся при нагревании инициаторов в условиях, при которых распад происходит по нецепному механизму, можно выразить уравнением

V ин = k ин [I] (1.1)

где [I] -- концентрация инициатора; k ин -- константа скорости инициирования.

Скорость роста цепи выражается уравнением

где k ip -- константа скорости присоединения мономера к радикалу со степенью полимеризации n = i; -- концентрация радикалов со степенью полимеризации i; [M] -- концентрация мономера.

При образовании полимеров большой молекулярной массы с хорошим приближением можно принять, что k p не зависит от степени полимеризации радикала (практически, начиная со степени полимеризации n = 3-4). Тогда выражение для v p упрощается:

где -- концентрация всех растущих радикалов.

Скорость исчезновения радикалов в результате рекомбинации и диспропорционирования описывается уравнением

D[R]/dt = k 0 [R] 2

где k 0 -- константа скорости обрыва (в предположении, что реакционная способность радикалов в реакциях обрыва не зависит от их степени полимеризации).

Общая скорость полимеризации, равная скорости исчезновения мономера в системе, при условии, что степень полимеризации образующегося полимера достаточно велика и мономер расходуется только на полимеризацию, идентична скорости роста цепей, т. е.

D[M]/dt v p = k p [R][M] (1.2)

Если в системе отсутствует ингибитор, то активные радикалы исчезают в результате их рекомбинации или диспропорционирования. В этом случае изменение концентрации радикалов описывается уравнением

D[R]/dt = v ин - k 0 [R] 2

Концентрацию радикалов [R], которую трудно измерить прямыми опытами, можно исключить из уравнения (1.2), приняв, что скорость образования радикалов равна скорости их исчезновения (условие квазистационарности ), т. е. d[R]/dt = 0. При радикальной полимеризации это условие обычно практически выполняется уже через несколько секунд после начала реакции. Поэтому

v ин = k 0 [R] 2

[R] = (v ин / k 0) 1/2

И -d[M]/dt = k p (v ин / k 0) 1/2 [M] (1.3)

Таким образом, скорость радикальной полимеризации имеет первый порядок по концентрации мономера и порядок 0,5 по концентрации инициатора, что, как правило, и наблюдается на опыте.

Степень полимеризации . Из кинетических данных можно рассчитать степень полимеризации Р n полученного полимера. Она равна отношению числа молекул мономера, включившихся за время полимеризации в состав полимерных цепей, к числу образовавшихся материальных цепей. Если полимеризация протекает в условиях квазистационарности в отсутствие ингибитора, то при достаточно малой глубине превращения, когда полимера в системе еще мало и, следовательно, скоростью передачи цепи на полимер и расходом мономера можно пренебречь

Р n = v p / v 0 + v пер (1.4)

где v 0 -скорость бимолекулярного обрыва цепи; v пер = (k М [M] + k S [S] x [R] - сумма скоростей передачи цепи на мономер и растворитель.

При рекомбинации двух радикалов образуется одна материальная цепь, т. е. происходит среднестатистическое удваивание Р n , поэтому в знаменателе уравнения (1.4) перед членом, соответствующим обрыву путем рекомбинации, необходимо поставить множитель Ѕ. Кроме того, при допущении, что доля полимерных радикалов, обрывающихся по механизму диспропорционирования, равна, а доля радикалов, гибнущих при рекомбинации, равна 1-, уравнение для Р n принимает вид

Тогда для величины, обратной Р n , получим:

Выразив концентрацию радикала через скорость полимеризации v р = k P [R][М] и используя константы С M и C S , окончательно получим:

Полученное уравнение связывает среднечисловую степень полимеризации со скоростью реакции, константами передачи цепи и концентрациями мономера и передающего агента. Из уравнения (1.5) следует, что максимальная среднечисловая степень полимеризации образующегося полимера, достижимая при данной температуре, в отсутствие других передающих агентов определяется реакцией передачи цепи на мономер, т. е. Р n макс С М -1 .

Выведенные выше уравнения справедливы для радикальной полимеризации при небольших степенях превращения мономера в полимер (не превышающих 10%). При больших, глубинах превращения наблюдаются отклонения, связанные с возрастанием вязкости реакционной среды при увеличении концентрации растворенного в ней полимера, что приводит к замедлению диффузии макрорадикалов и резко уменьшает вероятность их рекомбинации или диспропорционирования. В связи с этим эффективная константа скорости обрыва значительно уменьшается. Концентрация радикалов в системе возрастает, а скорость полимеризации увеличивается. Это явление называют гель-эффектом . Если при радикальной полимеризации образуется полимер, нерастворимый или ограниченно набухающий в реакционной среде, то эффекты, связанные с диффузионным торможением реакции бимолекулярного обрыва, проявляются, уже начиная с очень малых глубин превращения.

Механизм этого метода синтеза был установлен еще в 30-х годах в работах С.С. Медведева и Г. Штаудингера. Полимеризацию инициируют свободные радикалы, генерированные тепловым, световым или радиоактивным воздействиями, которые малоэффективны или сопровождаются побочными явлениями. Поэтому применяют химические инициаторы (пероксид бензоила, гидропероксид изопропилбензола, динитрил азоизомасляной кислоты и др.):

(С6Н5СОО)2>2С6Н5СОО*>2С*6Н5+2СО2,

Для ускорения распада инициаторов на радикалы вводят восстановители (амины, сульфиты, тиосульфаты, оксикислоты, соли двухвалентного железа). Окислительно-восстановительные системы снижают энергию активации стадии инициирования со 146 до 50-84 кДж/моль. При распаде гидропероксида в присутствии солей Fe2+ ронгалит (НО-СН2-SO2Na) позволяет легко переводить ионы Fe3+ в Fe2+, и цикл распада инициатора повторяется:

ROOH+Fe2+>RO*+НО-+Fe3+;

2Fe3++2НO-+НО-СН2-SO2Na>2Fe2++HO-CH2-SO3Na+H2O.

Неорганическая система персульфат-тиосульфат действует по схеме:

S2O8-2-+ S2O3-2-> SO4-2-+ S*O4-+ S*2O3-; S*O4-+Н2О > НSO4-+О*Н.

Образующиеся свободные радикалы инициируют полимеризацию мономеров.

На стадии обрыва цепи образуются нейтральные макромолекулы при рекомбинации (столкновении) макрорадикалов или в результате их диспропорционирования до двух нейтральных макромолекул:

R-(-CH2-CHX-)n-CH2-XHC*+R-(-CH2-CHX-)m-CH2XHC*>

>R-(-CH2-СНХ-)n-CH2-CHX-CHX-CH2-(-CHX-CH2-)m-R (рекомбинация),

R-(-CH2-CHX-)n-CH2-XHC* + XHC*-CH2-(-CHX-CH2-)m-R>

>R-(-CH2-CHX-)n-CH2-CH2X+XHC=CH-(-CHX-CH2-)m-R (диспропорционирование).

Вид реакции обрыва цепи зависит от строения молекул мономера. Если мономер содержит электроноотрицательный или громоздкий заместитель (метилметакрилат), то цепь обрывается путем диспропорционирования:


При полимеризации стирола преобладает рекомбинация макрорадикалов:


По мере роста цепи увеличивается вязкость системы, уменьшаются подвижность макрорадикалов и скорость их рекомбинации, растут время их жизни и концентрация, что приводит к ускорению полимеризации на поздних стадиях (гель-эффект) и ухудшению механических свойств полимера. Для регулирования ММ полимера используют реакцию передачи цепи путем введения в систему регулятора, например меркаптана (RSH), или растворителя, особенно галогенсодержащего, например тетрахлорида углерода:

~CH2-HXC*+RSH>~CH2-CH2X+RS* (обрыв материальной цепи),

RS*+CH2=СHX>RSCH2-HXC* (начало новой материальной цепи); или

~CH2-HXC*+CCl4>~CH2-HXCCl+C*Cl3 (обрыв материальной цепи),

CH2=СHX+C*Cl3>Cl3C-СН2-HXC* (начало новой материальной цепи),

или повышения концентрации инициатора до его индуцированного распада:

~CH2-HXC*+ROOR > ~CH2-CHX-OR+RO*;

RO*+CH2=СHX > RО-CH2-HXC* и т.д.

В отличие от реакции обрыва цепи, они обрывают только материальную цепь - перестает расти число звеньев в макромолекуле. При этом они сами становятся свободным радикалом и продолжают кинетическую цепь, которая измеряется числом элементарных актов присоединения молекул мономера к активному центру в расчете на один свободный радикал, образовавшийся при инициировании реакции полимеризации. С повышением температуры и количества регулятора вследствие ускорения реакций передачи цепи и подавления реакций роста цепи образуются низкомолекулярные вещества (реакция теломеризации), которые можно выделить и использовать для получения новых полимеров.

Кинетика цепной полимеризации по конверсии (степени превращения) мономера характеризуется S-образной кривой с пятью участками (рис.7):

· участок ингибирования, когда концентрация свободных радикалов мала, и они не могут начать цепной процесс полимеризации (1);

· участок ускорения полимеризации, где начинается основная реакция превращения мономера в полимер, при этом скорость реакции растет (2);

· участок стационарного состояния (прямолинейный участок), где расходуется основное количество мономера с постоянной скоростью (3);

· участок замедления полимеризации в связи с резким уменьшением концентрации мономера (4);

· прекращение основной реакции в связи исчерпанием всего мономера (5).

Рис.7.

Скорость реакции инициирования пропорциональна концентрации введенного инициатора [I]: vи=kи[I], где kи - константа скорости реакции инициирования. Скорость реакции роста цепи пропорциональна произведению концентраций растущих макрорадикалов [М*] и молекул свободного мономера [М]: vр=kр[М*][М], где kр-константа скорости реакции роста цепи. Скорость реакции обрыва цепи пропорциональна квадрату концентрации соударяющихся макрорадикалов: vобр=kобр[М*]2. Скорость полимеризации является алгебраической суммой скоростей трех ее стадий: vобщ=vи+vр-vобр.

Для кинетического анализа интересен стационарный период реакции, когда полимеризация идет с постоянной скоростью, и число вновь образующихся свободных радикалов равно количеству исчезающих макрорадикалов при обрыве цепей (vи=vобр): kи[I]=kобр[М*]2. Отсюда следует, что скорость конверсии мономера пропорциональна квадратному корню из концентрации инициатора. Степень полимеризации пропорциональна скорости роста цепи и обратно пропорциональна скорости обрыва цепи, так как макромолекула образуется при столкновении двух макрорадикалов. Иными словами, степень полимеризации и средняя молекулярная масса полимера обратно пропорциональны квадратному корню из концентрации инициатора:

Таким образом, параметры процесса и размер макромолекул для стационарного периода можно выразить через концентрацию химического инициатора.

При повышении температуры на 10оС возрастает в 2-3 раза скорость полимеризации, а со снижением температуры растут регулярность чередования звеньев и величина ММ, уменьшаются доля низкомолекулярных фракций, разветвленность макромолекул и побочные реакции. Для повышения скорости полимеризации при низких температурах вводят промоторы, активирующие распад молекул инициатора. Кинетические закономерности процесса полимеризации поддаются регулированию за счет изменения:

· времени до начала полимеризации (длины индукционного периода) путем введения ингибиторов, реагирующих с начальными радикалами;

· наклона прямолинейного участка кинетической кривой к оси абсцисс путем введения замедлителей полимеризации (бензохинон, нитробензол), которые снижают концентрацию радикалов и уменьшают время их жизни, что приводит к уменьшению длины полимерной цепи. Ингибитор не влияет на скорость полимеризации, но удлиняет индукционный период. В зависимости от природы мономера одно и то же вещество может быть и ингибитором, и замедлителем, и регулятором полимеризации. Бензохинон действует по схеме:

В радикальной полимеризации способно участвовать большинство выпускаемых промышленностью мономеров этиленового и диенового ряда. Активность мономеров этиленового ряда зависит от химической природы заместителей при двойной связи и определяется активностью свободного радикала, образующегося при разрыве р-связи. Активность радикала зависит от электроноакцепторных свойств замещающей группы и растет с увеличением ее способности к делокализации электронного облака. Наилучшим акцептором электронов является бензольное кольцо стирола, а больше донорами электронов - алкоксигруппы винилалкиловых эфиров. Радикалы же этих мономеров дают обратную (антибатную) последовательность активностей: время жизни радикала тем меньше, чем он активнее и чем меньше эффект сопряжения его неспаренного электрона с электронной структурой заместителя в молекуле мономера. Поэтому в порядке убывания активности виниловые мономеры располагаются в следующий ряд:


Активность радикалов может быть количественно определена и растет с увеличением соотношения констант kобр/kр. Например, активности радикалов винилацетата, метилметакрилата и стирола в реакции роста цепи соотносятся количественно как 20:2:1. На активность радикалов влияют также условия полимеризации, а на активность мономеров - количество заместителей. Наличие двух бензольных колец при одном атоме углерода в молекуле мономера полностью подавляет его способность к полимеризации из-за сильной стабилизации неспаренного электрона.

Одна из особенностей свободнорадикальной полимеризации состоит в том, что по длине одной макромолекулы могут существовать различные типы соединения звеньев мономеров - «голова к хвосту» (а), «голова к голове» (б), так как радикал может атаковать молекулу мономера с любого ее конца:

а) CH2-НC-CH2-HC б) НC-CH2-CH2-HC-НC-CH2.

Нет и порядка в пространственном расположении заместителей у мономерных звеньев из-за отсутствия координирующего действия при присоединении каждой следующей молекулы мономера. Для полимеров винилового ряда характерно чередование звеньев в положении «голова к хвосту», что обеспечивает высокий уровень свойств полимеров, несмотря на отсутствие пространственной регулярности их макромолекул. Поэтому методом свободнорадикальной полимеризации производят основную массу промышленных полимеров этого типа - полистирол, полиакрилонитрил, полиметилметакрилат, поливинилхлорид, поливинилацетат.

По сравнению с мономерами винилового ряда диеновые мономеры дают наибольшее разнообразие структур макромолекул, так как каждая молекула содержит две двойные связи. Существуют пять основных типов соединения звеньев в макромолекуле - в положениях 1,4; 1,1; 4,4; 1,2 и 3,4. В двух последних случаях их можно рассматривать как полимеры винилового ряда:


Для несимметричных диенов (изопрен, хлоропрен) при соединении их звеньев в положениях 1,1 и 4,4 может нарушаться регулярность их чередования:


Как отмечалось выше, 1,4-полидиены могут различаться пространственным расположением СН2-групп в цепях относительно плоскости двойной связи:

По длине цепи могут существовать все виды структур полидиенов, что приводит к нестабильности и невоспроизводимости их свойств. Структуры-1,4 формируются преимущественно в транс-положении, особенно при полимеризации активного и поляризованного хлоропрена, поэтому полихлоропрен производится в промышленном масштабе методом свободнорадикальной полимеризации. Полибутадиен и полиизопрен наиболее ценны в основном как цис-1,4-изомеры, поэтому в промышленности все чаще их получают методами ионно-координационной полимеризации.

5.1.1. Радикальная полимеризация

Механизм полимеризации

Простейшая схема кинетической цепи при химическом инициировании может быть представлена как такая последовательность реакций:

1. Инициирование (химическое):

а) образование первичных свободных радикалов

б) зарождение материальной цепи

2. Рост материальной цепи:

3. Обрыв материальной цепи:

а) рекомбинация

б) диспропорционирование

в) передача цепи (рост кинетической цепи);

на молекулу полимера

на молекулу мономера

на молекулу растворителя

При описании процесса полимеризации делаются следующие допущения:

  • активность (реакционная способность) свободного радикала зависит только от природы атома, на котором локализован неспаренный электрон, и от его ближайшего окружения;
  • средняя длина кинетической цепи велика;
  • в реакционной среде устанавливается стационарное состояние, т.е. скорость инициирования равна скорости гибели свободных радикалов.

Взаимодействие свободнорадикальных частиц относится к быстрым химическим реакциям. Однако сближение реагирующих частиц протекает существенно медленнее. На рис. 5.1 приведена одномерная схема, иллюстрирующая определяющую роль диффузионных процессов на всех этапах реакции полимеризации.

Активные частицы окружены молекулами растворителя (среды), образующими


Рис. 5.1. Схема реализации "эффекта клетки":

I - растворитель; II - "дырка"; III -реагирующая частица

"клетку", внутри которой их движение возможно как серия "перескоков" в вакантные пустоты - "дырки". Сближение реагирующих частиц и выход продуктов реакции из этой "клетки" является диффузионно-контролируемым процессом. Эта особенность процесса определяется как "эффект пленения", или "эффект клетки" (эффект Франка - Рабиновича).

Вопрос. 2,2"-азо-бис -изобутиронитрил (динитрил азодиизомасляной кислоты - ДАК, порофор ЧХЗ) широко используется в экспериментальной и производственной практике в качестве вещества, легко генерирующего в результате термического распада активные свободные радикалы по схеме

Этот процесс начинается в растворе уже при 40°С. Вместе с тем было установлено, что увеличение вязкости реакционной среды приводит к уменьшению К d . Какова возможная причина этого эффекта?

Ответ. Уменьшение скорости распада инициатора при повышении вязкости реакционной среды может быть обусловлено двухстадийностью этой реакции: вначале образуются радикалы


С увеличением вязкости среды "эффект клетки" тормозит разделение первоначально возникшей радикальной пары, препятствуя тем самым выходу активных частиц из "клетки". В связи с этим вторая стадия процесса полного распада этого соединения на свободные радикалы протекает с меньшей скоростью.

Зарождение цепи (инициирование) . Процесс образования активных центров протекает сравнительно медленно и требует затраты определенного количества энергии. Эта начальная стадия радикальной полимеризации носит название зарождения (инициирования) цепи и приводит к образованию свободных (вторичных) радикалов из валентно-насыщенных молекул мономера. Свободные радикалы в полимеризующейся системе могут образовываться различными способами: под влиянием тепла, света, ультразвука, жесткого излучения (рентгеновские, α-, β- и γ-лучи - физическое инициирование),

а также при введении химических инициаторов полимеризации, т.е. веществ, легко распадающихся на свободные радикалы. Возбуждение реакции полимеризации при введении инициаторов получило широкое применение при получении волокнообразующих полимеров, так как при этом облегчается регулирование процесса синтеза. Распад инициатора требует подвода внешней энергии и протекает с определенной скоростью. Например, инициаторами свободнорадикальной полимеризации являются соединения, способные распадаться: по связи ~О~О~ (I) или по связи (II).

I. Энергия диссоциации этой связи равна 150-160 кДж/моль. К соединениям этого типа относятся:


II. Энергия диссоциации этой связи равна 295 кДж/моль. Использование азосоединений в качестве инициаторов предопределяется

2,2"-азо-бис -изобутиронитрил

NC-C(CH 3) 2 -N=N-C(CH 3) 2 -CN.

Скорость образования первичных свободных радикалов описывается уравнением скорости реакции первого порядка:

В результате интегрирования и последующего преобразования имеем

где [I] t и [I] 0 - текущая и начальная концентрации инициатора; t - время; K d - константа скорости реакции распада инициатора на свободные радикалы.

Задача. Определить константу скорости распада пероксида бензоила в диоксане при 80°С, если начальная концентрация его была 1,1%, а через 10 мин иодометрически в системе было обнаружено 1,07% пероксида бензоила.

Решение . Согласно уравнению (5.2),

ln = exp / Kd ) = 151,9 кДж/моль.

Оценка значений ΔE d позволяет выбрать наиболее целесообразную температурную область синтеза волокнообразующих полимеров. В табл. 5.1 приводятся значения кажущейся энергии активации ΔE d и константы скорости K d для некоторых инициаторов. При проведении синтеза ниже 85°С целесообразно применять ДАК. При более высоких температурах лучшие результаты дает использование пероксида бензоила и др.

Таблица 5.1. Кинетические характеристики некоторых инициаторов полимеризации


Реакцию полимеризации при температурах ниже 70°С целесообразно проводить, используя неорганические пероксиды.

Продолжительность стадии инициирования сокращается при увеличении количества свободных радикалов.

Для увеличения скорости распада инициаторов, например пероксидов, в реакционную смесь вводят "промоторы" - восстановители. Окислительно-восстановительные инициирующие системы широко используются для проведения синтеза различных карбоцепных полимеров. Инициирование процесса полимеризации путем применения окислительно-восстановительных систем характеризуется небольшим температурным коэффициентом (сравнительно малой кажущейся энергией активации).

Таким образом, под воздействием физических или химических факторов в системе появляются свободные, радикалы, имеющие, например, неспаренные p -электроны и обладающие вследствие этого высокой химической активностью. Соударения свободных радикалов приводят к возникновению ковалентной связи между ними с образованием неактивной молекулы. При взаимодействии свободного радикала с неактивной молекулой образуется продукт реакции, имеющий тоже один неспаренный электрон и обладающий почти той же активностью, что и исходный свободный радикал. Эти процессы могут быть иллюстрированы схемой

R * + R * → R: R; R * + М → R: М * .

Склонность к реакциям присоединения ограничивает время жизни свободных радикалов. Например, полупериод жизни радикала Н 3 С * составляет 10 -4 с. Однако сопряжение неспаренного p -электрона [например, в трифенилметиле (С 6 Н 5) 3 С * ] или же экранизация его заместителями, входящими в состав свободного радикала, например в дифенилпикрилгидразиле

резко повышает стабильность свободных радикалов.

В результате химического инициирования свободный радикал становится концевой группой растущей полимерной цепи.

Время, необходимое для зарождения цепи, называется индукционным периодом. Вещества, увеличивающие индукционный период, называются ингибиторами. Не все свободные радикалы, взаимодействуя с мономерами, инициируют реакцию. Часть их после взаимного столкновения дезактивируется. Отношение количества радикалов, присоединившихся к мономеру и инициирующих реакцию, к общему количеству всех образовавшихся радикалов называется эффективностью инициатора f э. Эффективность инициатора может быть оценена одним из трех методов:

  • сравнением скорости разложения инициатора и скорости образования полимерных молекул (эта методика требует точного измерения средней молекулярной массы полимера);
  • сравнением количества инициатора, соединенного с полимером, с количеством разложившегося инициатора;
  • применением ингибитора, обрывающего кинетические цепи.

Например, применение дифенилпикрилгидразила позволяет осуществить обрыв цепи по схеме


Задача. Рассчитать эффективность 2,2"-азо-бис -изобутиронитрила, если при полимеризации стирола исходная концентрация инициатора составляла 1,1%, а за 20 мин реакции на 100 г мономера выделилось 80 см 3 азота (в пересчете на нормальные условия). Степень превращения мономера достигла 5%. Молекулярная масса полученного полимера 2500 (определена осмометрическим методом).

Решение. При распаде молекулы инициатора образуется два свободных радикала и выделяется молекула азота. Рассчитываем число молей инициатора в начале реакции на 100 г мономера:

[I] 0 = 1,1/164 = 0,007 = 7 · 10 -3 .

Количество выделившегося азота составит

80/(22,4 · 1000) = 3,5 · 10 -3 .

Таким образом, за 20 мин реакции разложилось 3,5 · 10 -3 моль инициатора и, следовательно, образовалось 7 · 10 -3 моль радикалов. При степени превращения 5% и средней молекулярной массе 2500 количество образовавшихся молей полимера составляет

5/2500 = 2 · 10 -3 .

Примем, что все кинетические цепи закончились рекомбинацией радикалов и, следовательно, на 1 моль полимера расходовался 1 моль инициатора. Отсюда находим эффективность инициатора f э:

f э = 2,0 · 10 -3 /(3,5 · 10 -3) = 0,6.

В общем случае скорость распада инициатора V 0 = K d [I].

Для большинства применяемых инициаторов f э находится в пределах 0,3-0,8, т.е. практически всегда f э f э изменяется в зависимости от среды: природы и количества инициатора, мономера, растворителя и т.д.

Например, при инициировании полимеризации акрилонитрила динитрилом азодиизомасляной кислоты в диметилформамиде и 51,5%-м водном растворе NaCNS величина K d f э во втором случае оказывается существенно меньшей вследствие большого проявления "эффекта клетки" (возрастает вязкость среды, а также проявляются специфические сольватационные эффекты).

Многочисленными экспериментальными данными установлено, что при постоянной концентрации мономера скорость полимеризации пропорциональна корню квадратному из концентрации инициатора ("правило квадратного корня"):

где К - суммарная константа скорости полимеризации; [М] - концентрация мономера; [I] - концентрация инициатора;

где K d - константа скорости распада инициатора; К p - константа скорости роста полимерной цепи; К 0 - константа скорости обрыва цепи.

Вопрос. Гетерофазная полимеризация винилхлорида в присутствии пероксида бензоила протекает в изотермических условиях в 6-8 раз медленнее, чем в присутствии динитрила азодиизомасляной кислоты. Объясните возможную причину этого явления.

Ответ . Пероксид бензоила очень мало растворим в воде. Поэтому скорость инициирования достигает заметной величины лишь после того, как концентрация частиц инициатора в дисперсии окажется достаточно большой [см. уравнение (5.3)]. Динитрил азодиизомасляной кислоты лучше растворяется в воде, в связи с этим индукционный период процесса полимеризации, который определяет общую продолжительность процесса, в этом случае будет меньше.

Продолжение (рост) цепи. Реакциями продолжения (роста) кинетической цепи называются элементарные

стадии цепной реакции, протекающие с сохранением свободной валентности и приводящие к расходованию исходных веществ и образованию продуктов реакции. При полимеризации эта последовательность реакций обусловливает рост полимерной цепи:


Рост цепи - быстро протекающая стадия процесса полимеризации, описываемая уравнением (5.3). Скорость полимеризации возрастает также при увеличении концентрации мономера в реакционной среде.

Обрыв цепи. Обрывом кинетической цепи называется стадия цепного процесса, приводящая к исчезновению свободной валентности. Обрыв кинетической цепи может происходить:

в результате рекомбинации, т.е. взаимодействия двух одинаковых или различных свободных радикалов,

или диспропорционирования, т.е. передачи протона от одного радикала к другому, с потерей активности продуктов реакции, т.е.


Энергия активации первой реакции - рекомбинации - близка к нулю и, во всяком случае, не превышает 0,5-1,5 кДж/моль, тогда как энергия активации диспропорционирования достигает значений 16-18 кДж/моль.

Прекращение роста макромолекулы может происходить в результате рекомбинации и диспропорционирования макрорадикалов.

Вместе с тем такой же эффект наблюдается при встрече полимерного радикала (макрорадикала) с неактивной молекулой. Прекращение роста макромолекулы в результате переноса неспаренного электрона инертной молекуле называется передачей кинетической цепи ("радикал отропией"). Этот процесс может приводить к присоединению атома водорода к растущей полимерной цепи:

В роли RH могут выступать молекулы инициатора, растворителя, мономера, неактивного полимера или макрорадикала и др. Константы скоростей этих реакций будут соответственно К п i , K п s , K п м, K п п.

Вопрос. В процессе свободнорадикальной полимеризации наряду с линейными макромолекулами образуются разветвленные. Напишите вероятную схему образования таких разветвлений при полимеризации винилацетата в присутствии пероксида бензоила.

Ответ. При высоких степенях превращения образовавшиеся макромолекулы (и макрорадикалы) могут подвергаться воздействию подвижных свободных радикалов. Наиболее уязвимой частью макромолекулы являются атомы водорода у третичных углеродных атомов:


Обрыв кинетической цепи приводит к уменьшению степени полимеризации образующегося высокомолекулярного соединения. Иногда для регулирования скорости процесса и молекулярной массы полимеров в реакционную смесь вносят специальные вещества (гидрохинон, нитробензол и др.), называемые ингибиторами полимеризации. Их действие основано на связывании

активных центров кинетической цепи. Длина кинетической цепи v составляет

где V р и V t - скорости роста и обрыва цепи соответственно.

С помощью ингибиторов полимеризации можно варьировать в относительно широких пределах выход и свойства образующегося полимера (средняя молекулярная масса, степень полидисперсности).

Вопрос. В начальные периоды свободнорадикальной полимеризации образуются полимеры с максимальной молекулярной массой. По мере увеличения степени превращения мономера (выхода полимера) молекулярная масса его обычно уменьшается. Объясните вероятную причину этого явления.

Ответ . По мере увеличения степени превращения число растущих кинетических цепей в реакционной среде возрастает, что обусловливает повышение вероятности рекомбинационных процессов.

Полимеризация является сложным процессом и часто не может быть описана одним стехиометрическим уравнением, так как в ряде случаев обрыв цепей приводит к появлению некоторых побочных продуктов. Однако при достаточно большой длине кинетической цепи полимеризацию можно с достаточным приближением описать одним стехиометрическим уравнением. Скорость цепной реакции v равна произведению скорости инициирования цепи v i и длины кинетической цепи v :

При этом v = (1 - β)/β, где β - вероятность обрыва цепи на каждой стадии роста. Длину кинетической цепи v можно вычислить исходя из соотношения

Задача. Определить значение К р /К

может быть определено из уравнения стационарной скорости полимеризации, хорошо описывающего процесс в начальной его стадии [уравнение (5.3)]. После преобразования уравнений (5.3) и (5.4) получаем

ln([M] 0 /[M] t ) = (K p /K

)V i t . В присутствии акцепторов свободных радикалов процесс замедляется (ингибируется). Если С инг - концентрация ингибитора, то скорость реакции инициирования может быть рассчитана из зависимости

V i = C инг t i .

Согласно этой эмпирической зависимости, для любой произвольно выбранной концентрации ингибитора (например, 0,2 моль/дм 3) можно рассчитать соответствующее значение t , а следовательно, и скорость инициирования:

  • t = 2 · 10 -5 + 2857 · 0,2 = 571 мин;
  • V i = 1 · 10 -1 /571 = 5,83 · 10 -6 моль/(дм 3 · с).

Для двух моментов времени ≥t i можно вычислить значение К р /К

= = 0,25.

В соответствии с уравнениями (5.3) и (5.4) имеем

где f э - эффективность инициатора; K d - константа скорости разложения инициатора; [М] - концентрация мономера; [I] - концентрация инициатора.

Ранее отмечалось, что величины f э и K d можно измерять раздельно. Экспериментально определяются также V p , [I], [M]. Найдя таким образом K

= 2,34 · 10 -7 .

При малых степенях конверсии суммарная скорость полимеризации V удовлетворительно описывается уравнением (5.8). Температурная зависимость V , характеризуемая кажущейся энергией активации процесса синтеза, описывается равенством

ΔE об = 1/2ΔE i - ΔE р + 1/2ΔE o ,

где ΔE i , ΔE p и ΔE o - кажущиеся энергии активации стадий инициирования, роста и обрыва цепи соответственно.

Для большинства виниловых мономеров

  • ΔE i = 130 ± 10 кДж/моль; ΔE p = 25 + 5 кДж/моль;
  • ΔЕ o = 6 ± 2 кДж/моль.

Это означает, что с повышением температуры во всех случаях скорость реакции полимеризации возрастает.

Длина кинетической цепи v в изотермических условиях синтеза определяется только природой мономера.

Главная > Лекция

Лекция 4. Радикальная полимеризация.

Радикальная полимеризация протекает по цепному механизму . В результате каждого элементарного акта происходит образование нового радикала, к которому присоединяется новая нейтральная молекула, т.е. кинетическая цепь превращается в материальную . Основные стадии радикальной полимеризации:
    инициирование рост цепи обрыв цепи передача цепи
1 . Инициирование заключается в образовании свободных радикалов под действием:
    тепла (термическое инициирование); света (фотоинициирование); ионизирующих излучений (радиационное инициирование); химических инициаторов (химическое инициирование)
Первые три способа малоэффективны, т.к. сопровождаются различными побочными реакциями (разветвление, деструкция и т.д.). Чаще всего используют химическое инициирование, при котором образование свободных радикалов происходит вследствие термического и фотохимического распада различных соединений, содержащих нестабильные (лабильные) связи, а также в результате ОВР. Наиболее распространёнными инициаторами являются: пероксиды, гидропероксиды, изо- и диазосоединения, перэфиры, ацилпероксиды.

Пример .

а) пероксид бензоила

t распада = 70 - 80˚С

Эффективность инициирования f = 0,7 - 0,9

б) азобисизобутиронитрил

t распада = 60 - 75˚С

Эффективность инициирования f = 0,5 - 0,7

в) персульфат калия

t распад = 40 - 50˚С

Выбор инициатора обусловлен его растворимостью в мономере или растворителе и температурой, при которых может быть достигнута определённая скорость получения свободных радикалов.

Радикал, образующийся при инициировании, присоединяется к двойной (=) связи мономера и начинает реакционную цепь. Поскольку стабильность радикалов, образующихся при распаде пероксидов, азосоединений и других инициаторов разная, скорость их реакции с молекулами мономера, а следовательно, и скорость полимеризации различны. Для облегчения распада инициаторов и снижения энергии активации стадии инициирования в реакцию вводят восстановители (амины, соли металлов переменной степени окисления). С целью понижения
(от 146 до 42 - 84 кДж/моль), облегчения распада инициаторов используют окислительно-восстановительные системы . Например:

Окислительно-восстановительные системы применяют в водных средах или при полимеризации в эмульсии . Широкое распространение их в промышленности производства полимеров связано с существенным снижением энергии активации распада инициаторов на свободные радикалы и уменьшением таким образом энергетических затрат в производственных условиях. 2. Рост цепи – заключается в последовательном присоединении молекул мономера к образующемуся активному центру с передачей его на конец цепи. Развитие кинетической цепи сопровождением образованием материальной цепи.

(маленькая)

Константа скорости реакции k p = 10 2 – 10 4 (большая)

Энергия активации и константа скорости реакции зависят от природы мономеров, параметров реакционной среды.

3. Обрыв цепи – происходит в результате гибели активных центров.

Обрыв цепи приводит к обрыву материальной и кинетической цепи.

Энергия активации обрыва цепи определяется энергией активации диффузии радикалов. Обрыв может быть при любой длине растущего макрорадикала. При этом получаются макромолекулы разной длины. Обрыв чаще всего происходит двумя способами: путем рекомбинации и диспропорционирования.

Е акт ≤ 4,2 кДж/моль

E акт = 12,6-16,8 кДж/моль

Возможен также обрыв при взаимодействии растущих радикалов с низкомолекулярными веществами, присутствующими в системе. понизив температуру ↓ Понизить скорость обрыва цепи можно повысив вязкость

    Передача цепи – происходит путём отрыва растущим радикалом атома или группы атомов от какой-то молекулы (передатчика цепи). При этом:
    растущий радикал превращается в валентно - ненасыщенную молекулу; новый радикал развивает кинетическую цепь
Таким образом, реакция передачи цепи заключается в том, что вводимое в систему вещество – регулятор- обрывает растущую цепь, но при этом само становится свободным радикалом и начинает новую кинетическую цепь полимеризации. Повышение температуры и увеличение количества агента передачи цепи (например, галогенсодержащих углеводородов) приводят к резкому возрастанию скорости реакции передачи цепи. Эта реакция подавляет другие стадии полимеризации, так, что образуются индивидуальные низкомолекулярные вещества, которые можно разделить(реакция теломеризации). Они содержат концевые группы из продуктов расщепления агента передачи цепи и являются активными в различных химических реакциях, в частности для получения новых полимеров. Теломеры: олигомеры, имеющие на концах молекул реакционноспособные группы.
и т. д. Так, теломеризация этилена в среде тетрахлорида углерода протекает с образованием индивидуальных продуктов (тетрахлорпентан, тетрахлоргептан и др.) Пример . Передача цепи через: а) молекулу мономера б) молекулу растворителя

начало новой цепи

в) специально вводимые вещества (регуляторы), например, меркаптаны.

k m , k s – константы скорости передачи цепи.

При взаимодействии растущего радикала с молекулой передатчика цепи прекращается рост материальной цепи, т.е. снижается молекулярная масса образующегося полимера; кинетическая цепь сохраняется. Способность к участию в передаче цепи при радикальной полимеризации характеризуется константой передачи цепи на мономер C m , на растворитель C s , на инициатор C u .



C m = (0,1 - 5)*10 -4 – маленькое значение

Например, при полимеризации винилацетата C m = 2∙10 - 3 Из растворителей высокое значение C s у
. Так при полимеризации стирола C s = 9∙10 - 3

Кинетика радикальной полимеризации

Скорость процесса описывается уравнением:
, где
- скорость исчезновения мономера и - скорость инициирования и роста цепи При образовании высокомолекулярного полимера число молекул мономера, участвующих в стадии инициирования намного меньше, чем в стадии роста, поэтому можно пренебречь.

замерить трудно. Для стационарного процесса скорость возникновения радикала равна скорости их гибели, а скорость изменения концентрации радикалов (
)
Для стационарного процесса уравнение скорости полимеризации примет вид:
концентрация инициатора (известна и задается до начала реакции) Из уравнения следует, что скорость полимеризации зависит от скорости инициирования в степени 0,5, т.е. увеличение в два раза приводит к увеличению
в
раз. Это объясняется бимолекулярным механизмом отрыва цепи. При термическом инициировании скорость полимеризации V зависит от соотношения трёх констант скорости реакции
Типичная кинетическая кривая, описывающая конверсию мономера (т.е. превращение мономера в полимер в результате полимеризации) в зависимости от времени, имеет S-образный вид. Р
ис.1 Типичная кинетическая кривая цепной радикальной полимеризации:

1 – ингибирование; 2 – ускорение полимеризации (скорость растет со временем); 3 – стационарный период (скорость полимеризации постоянная); 4 – замедление полимеризации (скорость уменьшается со временем)

Как видно из рис. 1 на кривой можно выделить пять участков по значениям скоростей основной реакции превращения мономера в полимер в результате полимеризации: 1 – участок ингибирования , где концентрация свободных радикалов мала. И они не могут начать цепной процесс полимеризации; 2 – участок ускорения полимеризации , где начинается основная реакция превращения мономера в полимер, причем скорость растет; 3 – участок стационарного состояния, где происходит полимеризация основного количества мономера при постоянной скорости (прямолинейная зависимость конверсии от времени); 4 – участок замедления реакции , где скорость реакции уменьшается в связи с убылью содержания свободного мономера; 5 – прекращение основной реакции после исчерпания всего количества мономера. Наибольший интерес представляет стационарный период реакции полимеризации, когда при постоянной скорости происходит полимеризация основной массы мономера. Это возможно, когда количество вновь образующихся свободных радикалов (стадия инициирования) равно количеству исчезающих макрорадикалов (стадия обрыва) реакционной и материальной цепей. Степень полимеризации n (т.е. число звеньев мономерных единиц в одной среднестатистической макромолекуле) по определению пропорциональна скорости реакции роста цепи и обратно пропорциональна скорости реакции обрыва цепи, так как нейтральная макромолекула образуется в результате столкновения двух растущих макрорадикалов. n = υ p /υ обр = k p [M] / k обр 2 = k p [M] / k обр = k n / = k n I / [I] 0,5 Иными словами, степень полимеризации и, следовательно, средняя молекулярная масса полимера при свободнорадикальной полимеризации обратно пропорциональна квадратному корню из концентрации инициатора.

Влияние различных факторов на процесс радикальной полимеризации.

1. Влияние температуры С повышением температуры увеличивается скорость реакции образования активных центров и реакции роста цепи. Таким образом, повышается суммарная скорость образования полимера. Обычно скорость полимеризации возрастает в 2-3 раза при повышении температуры на 10 ˚С. Однако при общем увеличении концентрации радикалов увеличивается и вероятность их столкновения друг с другом (обрыв цепи путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями. В результате молекулярная масса полимера в целом уменьшается (средняя степень полимеризации уменьшается с ростом температуры), увеличивается доля низкомолекулярных фракций в полимере. Возрастает число побочных реаций, приводящих к образованию разветвленных молекул. Увеличивается нерегулярность при построении цепи полимера вследствие возрастания доли типов соединения мономера «голова к голове» и «хвост к хвосту». 2. Влияние концентрации инициатора.

С повышением концентрации инициатора число свободных радикалов увеличивается, возрастает число активных центров, увеличивается суммарная скорость полимеризации.

Однако при общем увеличении концентрации радикалов увеличивается и вероятность их столкновения друг с другом, т.е. обрыва цепи, что приводит к снижению молекулярной массы полимера. 3. Влияние концентрации мономера. При полимеризации в среде растворителя суммарная скорость полимеризации и молекулярная масса образующегося полимера увеличивается с повышением концентрации мономера. При полимеризации в инертном растворителе, не участвующем в реакции, скорость полимеризации равна
(часто x = 1,5). Большинство растворителей участвуют в полимеризации (в реакции передачи цепи). Поэтому получаются гораздо более сложные зависимости. 4. Влияние давления. Давление высокое и сверхвысокое 300-500 МПа (3000-5000 ат) и выше значительно ускоряет полимеризацию. Пример. Полимеризация метилметакрилата в присутствии воздуха при 100˚C и p = 0,1 МПа продолжается 6 часов, под р = 300 МПа – 1 час, т.е. суммарная скорость полимеризации возрастает примерно в 6 раз. Аналогичным образом влияние p сказывается на полимеризации стирола, винилацетата, изопрена и др. NB ! Особенностью полимеризации под p является то, что увеличение скорости не сопровождается уменьшением молекулярной массы получаемого полимера.

Ингибиторы и регуляторы полимеризации

Явления обрыва и передачи цепи широко используются на практике для:

    предотвращения преждевременной полимеризации при хранении мономеров;
    для регулирования процесса полимеризации
В первом случае к мономерам добавляют ингибиторы или стабилизаторы, которые вызывают обрыв цепи , а сами превращаются в соединения, не способные инициировать полимеризацию. Также они разрушают пероксиды, образующиеся при взаимодействии мономера с атмосферным кислородом. Р
ис.2 Термическая полимеризация стирола при 100 ˚С в присутствии ингибиторов и замедлителей: 1 – без добавок; 2- 0,1% бензохинона (ингибитор); 3 – 0,2% нитробензола (ингибитор); 4 – 0,5% нитробензола (замедлитель)

Для регулирования процесса полимеризации применяют ингибиторы и замедлители полимеризации. Ингибиторы – низкомолекулярные вещества, которые меняют длительность индукционного периода, замедляя его. Это часто необходимо делать в технологии производства полимеров для предотвращения преждевременной полимеризации в неконтролируемых условиях. Ингибиторы: хиноны, ароматические амины, нитросоединения, фенолы, органические соли
,
,
,
и т.д. Пример : гидрохинон Хинон взаимодействует со свободными радикалами, превращая их в неактивные продукты. Гибель радикалов увеличивает длину индукционного периода. Наряду с ингибиторами, позволяющими полностью остановить полимеризацию, существуют замедлители полимеризации , которые только уменьшают её скорость. Замедлитель выполняет двойную роль: снижает концентрацию радикалов и уменьшает время их жизни, что приводит к снижению длины полимерной цепи. Ингибитор не влияет на скорость полимеризации, но предотвращает начало инициирования цепи, увеличивая индукционный период на кинетической кривой полимеризации. Длительность индукционного периода обычно пропорциональна количеству введенного ингибитора. Одно и то же вещество может выступать и как ингибитор, и как замедлитель, и как регулятор полимеризации в зависимости от природы полимеризуемого мономера. Например, кислород, который замедляет полимеризацию винилацетата и ускоряет полимеризацию стирола. При больших давлениях и высоких температурах кислород способствует полимеризации этилена. Это явление используют при промышленном производстве полиэтилена высокого давления. Кислород образует пероксиды или гидропероксиды при взаимодействии с мономерами или растущими цепями. гидропероксид пероксид В зависимости от стабильности промежуточных пероксидов или гидропероксидов они могут либо увеличивать концентрацию радикалов и ускорять полимеризацию, либо дезактивировать имеющиеся радикалы и замедлять или даже ингибировать полимеризацию. Рис.1.3 с.28 кулезнев Пример: ароматические нитро- и нитрозосоединения. Регуляторы полимеризации вызывают преждевременный обрыв материальной цепи , снижая молекулярную массу полимера пропорционально введенному количеству регулятора. Примером их являются меркаптаны, в том числе додецилмеркаптан. Из-за большой длины углеводородной цепи его молекулы недостаточно активны и расходуются медленно.

Примеси в мономере и растворителе : степень их влияния на процесс полимеризации определяется их химической природой и реакционной способностью по отношению к активным частицам. Для исключения влияния этих факторов берут для синтеза мономеры и растворители «кинетической чистоты», иногда вместо используют инертные газы -
,
.

Способы проведения полимеризации

Радикальную полимеризацию проводят в блоке (массе), растворе, эмульсии, суспензии и газовой фазе. При этом процесс может протекать в гомогенных или гетерогенных условиях. Кроме того, фазовое состояние исходной реакционной смеси может также меняться в ходе полимеризации.

    Полимеризация в блоке (в массе )

Полимеризацию проводят без растворителя. Из-за высокой экзотермичности процесс полимеризации трудно поддаётся регулированию. В ходе реакции повышается вязкость и затрудняется отвод тепла, вследствие чего возникают местные перегревы, приводящие к деструкции полимера, неоднородности его по молекулярной массе. Достоинством полимеризации в массе является возможность получения полимера в форме сосуда, в котором проводится процесс без какой-либо дополнительной обработки.

    Полимеризация в растворе

В отличие от полимеризации в блоке в данном случае отсутствуют местные перегревы, так как тепло реакции снимается растворителем, выполняющим также роль разбавителя. Уменьшается вязкость реакционной системы, что облегчает её перемешивание.

Однако возрастает роль (доля) реакций передачи цепи, что приводит к понижению молекулярной массы полимера. Кроме того, полимер может быть загрязнён остатками растворителя, который не всегда удаётся удалить из полимера. Существует два способа проведения полимеризации в растворе. а) Применяют растворитель, в котором растворяется и мономер, и полимер. Получаемый полимер используют непосредственно в растворе или выделяют его осаждением или испарением растворителя. б) В растворителе, используемом для полимеризации, растворяется мономер, но не растворяется полимер. Полимер по мере образования выпадает в твердом виде и может быть отделен фильтрованием.

    Полимеризация в суспензии (бисерная или гранульная)

Широко используется для синтеза полимеров. При этом мономер диспергируют в
в виде мелких капель. Устойчивость дисперсии достигается механическим перемешиванием и введением в реакционную систему специальных добавок – стабилизаторов. Процесс полимеризации осуществляют в каплях мономера, которые можно рассматривать как микрореакторы блочной полимеризации. Применяют инициаторы, растворимые в мономере. Достоинством этого процесса является хороший отвод тепла, недостатком - возможность загрязнения полимера остатками стабилизатора

    Полимеризация в эмульсии (эмульсионная полимеризация)

При эмульсионной полимеризации дисперсионной средой является вода. В качестве эмульгаторов используют различные мыла. Для инициирования чаще всего применяют водорастворимые инициаторы, окислительно - восстановительные системы. Полимеризация может протекать в молекулярном растворе мономера в , на поверхности раздела капля мономера - , на поверхности или внутри мицелл мыла, на поверхности или внутри образующихся полимерных частиц, набухших в полимере. Достоинствами процесса являются: высокая скорость, образование полимера большой молекулярной массы, лёгкость отвода тепла. Однако в результате эмульсионной полимеризации образуется большое количество сточных вод, требующих специальной очистки. Также необходимо удаление остатков эмульгатора из полимера.

    Газофазная полимеризация

При газофазной полимеризации мономер (например, этилен) находится в газообразном состоянии. В качестве инициаторов могут использоваться и пероксиды. Процесс протекает при высоком p . Выводы:
    Свободнорадикальная полимеризация – один из видов цепных процессов синтеза полимеров. Поляризация исходных молекул мономера облегчает их реакции с радикалами инициатора при химическом инициировании или при физических методах генерации радикалов. Электроноакцепторные заместители способствуют большей стабильности радикалов мономера и растущих цепей. Процесс радикальной полимеризации можно регулировать различными приемами как по скорости конверсии мономера, так и по величине молекулярной массы полимера. Для этого используют добавки низкомолекулярных веществ, выполняющих функции ингибиторов или замедлителей реакции, а также осуществляющих передачу реакционной цепи или снижающих энергию активации распада инициаторов на радикалы. Знание закономерностей свободнорадикальной полимеризации позволяет управлять структурой полимера, а следовательно, и его физическими и механическими свойствами. Благодаря простоте этот способ получения полимеров нашел широкое применение в промышленности.

Похожие статьи

  • Чем тамплиеры отличаются от масонов

    Во имя Отца. и Сына, и Святого Духа, аминь. Казалось, что после ликвидации ордена бедных соратников Христа и Храма Соломонова (лат.: pauperes commilitones Christi templique Salomonici) совместными усилиями французской короны и папской...

  • Роман Олеси Николаевой "Мене, текел, фарес": слово о любви в изменяющемся мире

    Олеся Александровна Николаева МЕНЕ, ТЕКЕЛ, ФАРЕС роман Было время, когда игумен Ерм казался нам ангелом, спустившимся на землю. Во плоти ангел. Некий херувим, что несколько занес нам песен райских… Когда он еще жил в Лавре, на заре своего...

  • Умножение способом «маленький замок

    второй способ умножения: НА Руси крестьяне не применяли таблицы умножения, но прекрасно считали произведение многозначных чисел. На Руси, начиная с глубокой древности и почти до восемнадцатого века, ру

  • Кубики Зайцева — достоинства и недостатки методики обучения

    Выбирая раннюю методику развития малыша, родители особое внимание уделяют системам, которые позволяют без проблем обучить деток чтению. По отзывам, на сегодняшний день наиболее востребованной считается программа Зайцева.Метод Зайцева...

  • Сочинение на тему "природа моего края"

    Написать сочинение-рассуждение «О природе родного края» могут задать в любом классе. Поэтому учащиеся должны быть готовы к такой работе. Нет ничего сложного, главное - включить воображение, вспомнить прекрасные пейзажи и все мысли...

  • Детство, опалённое войной Люся герасименко биография

    Планета №6 «Героическая» Дорогой друг, 8 февраля по всей Беларуси в пионерских дружинах проходят торжественные сборы, линейки, посвящённый Дню памяти юного героя-антифашиста. Поэтому шестую планету мы посвящаем ПИОНЕРАМ-ГЕРОЯМ, юным...