Производна на функция. Подробна теория с примери. Решаване на производната за манекени: дефиниция, как да се намери, примери за решения Формула за производна на функция в точка

Решаването на физически задачи или примери по математика е напълно невъзможно без познаване на производната и методите за нейното изчисляване. Производната е едно от най-важните понятия в математическия анализ. Решихме да посветим днешната статия на тази основна тема. Какво е производна, какво е нейното физично и геометрично значение, как се изчислява производната на функция? Всички тези въпроси могат да бъдат комбинирани в един: как да разберем производната?

Геометрично и физическо значение на производната

Нека има функция f(x) , посочени в определен интервал (а, б) . Точките x и x0 принадлежат на този интервал. Когато x се промени, самата функция се променя. Промяна на аргумента - разликата в стойностите му х-х0 . Тази разлика се записва като делта х и се нарича увеличение на аргумента. Промяна или увеличение на функция е разликата между стойностите на функция в две точки. Дефиниция на производна:

Производната на функция в точка е границата на отношението на нарастването на функцията в дадена точка към нарастването на аргумента, когато последният клони към нула.

Иначе може да се напише така:

Какъв е смисълът да се намери такава граница? И ето какво е:

производната на функция в точка е равна на тангенса на ъгъла между оста OX и допирателната към графиката на функцията в дадена точка.


Физическо значение на производната: производната на пътя по време е равна на скоростта на праволинейно движение.

Всъщност още от ученическите дни всеки знае, че скоростта е особен път x=f(t) и време T . Средна скорост за определен период от време:

За да разберете скоростта на движение в даден момент t0 трябва да изчислите лимита:

Правило едно: задайте константа

Константата може да бъде извадена от знака за производна. Освен това това трябва да се направи. Когато решавате примери по математика, вземете го за правило - Ако можете да опростите израз, не забравяйте да го опростите .

Пример. Нека изчислим производната:

Второ правило: производна на сумата от функции

Производната на сумата от две функции е равна на сумата от производните на тези функции. Същото важи и за производната на разликата на функциите.

Няма да даваме доказателство на тази теорема, а по-скоро ще разгледаме практически пример.

Намерете производната на функцията:

Трето правило: производна на произведението на функциите

Производната на произведението на две диференцируеми функции се изчислява по формулата:

Пример: намерете производната на функция:

Решение:

Тук е важно да говорим за изчисляване на производни на сложни функции. Производната на сложна функция е равна на произведението на производната на тази функция по отношение на междинния аргумент и производната на междинния аргумент по отношение на независимата променлива.

В горния пример срещаме израза:

В този случай междинният аргумент е 8x на пета степен. За да изчислим производната на такъв израз, първо изчисляваме производната на външната функция по отношение на междинния аргумент и след това умножаваме по производната на самия междинен аргумент по отношение на независимата променлива.

Четвърто правило: производна на частното на две функции

Формула за определяне на производната на частното на две функции:

Опитахме се да говорим за производни за манекени от нулата. Тази тема не е толкова проста, колкото изглежда, така че бъдете предупредени: в примерите често има клопки, така че бъдете внимателни, когато изчислявате производни.

С всякакви въпроси по тази и други теми можете да се свържете със студентската служба. За кратко време ще ви помогнем да решите най-трудния тест и да разберете задачите, дори ако никога преди не сте правили производни изчисления.

Производната на функция е една от трудните теми в училищната програма. Не всеки завършил ще отговори на въпроса какво е производно.

Тази статия обяснява по прост и ясен начин какво е дериват и защо е необходим.. Сега няма да се стремим към математическа строгост в презентацията. Най-важното е да разберете смисъла.

Нека си припомним определението:

Производната е скоростта на промяна на функция.

Фигурата показва графики на три функции. Според вас кой расте по-бързо?

Отговорът е очевиден - третият. Той има най-високата скорост на промяна, тоест най-голямата производна.

Ето още един пример.

Костя, Гриша и Матвей получиха работа едновременно. Нека видим как са се променили доходите им през годината:

Графиката показва всичко наведнъж, нали? Доходите на Костя се удвоиха за шест месеца. И доходите на Гриша също се увеличиха, но съвсем малко. И доходите на Матвей намаляха до нула. Началните условия са същите, но скоростта на промяна на функцията, т.е производна, - различен. Що се отнася до Матвей, неговата производна на доходите като цяло е отрицателна.

Интуитивно, ние лесно оценяваме скоростта на промяна на функция. Но как да направим това?

Това, което наистина гледаме, е колко стръмно се издига (или надолу) графиката на дадена функция. С други думи, колко бързо се променя y при промяна на x? Очевидно една и съща функция в различни точки може да има различни производни стойности - тоест може да се променя по-бързо или по-бавно.

Производната на функция се обозначава.

Ще ви покажем как да го намерите с помощта на графика.

Начертана е графика на някаква функция. Нека вземем точка с абциса върху нея. Нека начертаем допирателна към графиката на функцията в тази точка. Искаме да преценим колко стръмно се изкачва графиката на дадена функция. Удобна стойност за това е тангенс на допирателния ъгъл.

Производната на функция в точка е равна на тангенса на допирателния ъгъл, начертан към графиката на функцията в тази точка.

Моля, обърнете внимание, че като ъгъл на наклон на допирателната приемаме ъгъла между допирателната и положителната посока на оста.

Понякога учениците питат какво е допирателна към графиката на функция. Това е права линия, която има една обща точка с графиката в този раздел и както е показано на нашата фигура. Изглежда като допирателна към окръжност.

Нека го намерим. Спомняме си, че тангенсът на остър ъгъл в правоъгълен триъгълник е равен на съотношението на срещуположната страна към съседната страна. От триъгълника:

Намерихме производната с помощта на графика, без дори да знаем формулата на функцията. Такива проблеми често се срещат в Единния държавен изпит по математика под номера.

Има и друга важна връзка. Спомнете си, че правата линия е дадена от уравнението

Величината в това уравнение се нарича наклон на права линия. Тя е равна на тангенса на ъгъла на наклона на правата спрямо оста.

.

Разбираме това

Нека запомним тази формула. Той изразява геометричния смисъл на производната.

Производната на функция в точка е равна на наклона на допирателната, начертана към графиката на функцията в тази точка.

С други думи, производната е равна на тангенса на допирателния ъгъл.

Вече казахме, че една и съща функция може да има различни производни в различни точки. Нека видим как производната е свързана с поведението на функцията.

Нека начертаем графика на някаква функция. Нека тази функция нараства в някои области и намалява в други, и то с различна скорост. И нека тази функция има максимални и минимални точки.

В даден момент функцията се увеличава. Допирателната към графиката, начертана в точка, образува остър ъгъл с положителната посока на оста. Това означава, че производната в точката е положителна.

В момента нашата функция намалява. Допирателната в тази точка образува тъп ъгъл с положителната посока на оста. Тъй като тангенсът на тъп ъгъл е отрицателен, производната в точката е отрицателна.

Ето какво се случва:

Ако една функция нараства, нейната производна е положителна.

Ако намалява, производната му е отрицателна.

Какво ще се случи при максималните и минималните точки? Виждаме, че в точките (максимална точка) и (минимална точка) допирателната е хоризонтална. Следователно тангенсът на допирателната в тези точки е нула и производната също е нула.

Точка - максимална точка. В този момент нарастването на функцията се заменя с намаление. Следователно знакът на производната се променя в точката от „плюс“ на „минус“.

В точката - минималната точка - производната също е нула, но нейният знак се променя от "минус" на "плюс".

Извод: с помощта на производната можем да разберем всичко, което ни интересува за поведението на дадена функция.

Ако производната е положителна, тогава функцията нараства.

Ако производната е отрицателна, тогава функцията намалява.

В максималната точка производната е нула и променя знака от "плюс" на "минус".

В минималната точка производната също е нула и променя знака от „минус“ на „плюс“.

Нека напишем тези изводи под формата на таблица:

се увеличава максимална точка намалява минимална точка се увеличава
+ 0 - 0 +

Нека направим две малки уточнения. Един от тях ще ви трябва, когато решавате USE задачи. Друг – през първата година, с по-сериозно изучаване на функции и производни.

Възможно е производната на функция в дадена точка да е равна на нула, но функцията да няма нито максимум, нито минимум в тази точка. Това е т.нар :

В дадена точка допирателната към графиката е хоризонтална и производната е нула. Въпреки това, преди точката функцията нараства - и след точката тя продължава да нараства. Знакът на производната не се променя - тя остава положителна, както е била.

Също така се случва в точката на максимум или минимум производната да не съществува. На графиката това съответства на рязко прекъсване, когато е невъзможно да се начертае допирателна в дадена точка.

Как да намерим производната, ако функцията е дадена не с графика, а с формула? В този случай се прилага

Може да се извади като знак производна:

(af(x)" =af " (x).

Например:

Производна на алгебрична суманяколко функции (взети в постоянни числа) е равна на алгебричната им сума производни:

(f 1 (x) + f 2 (x) - f 3 (x))" = f 1 " (x) + f 2 " (x) - f 3 " (x).

Например:

(0,3 x 2 - 2 x + 0,8)" = (0,3 x 2)" - (2 x)" + (0,8)" = 0,6 x - 2 ( производнапоследно срокуравнението е нула).

Ако производна на функция g е различно от нула, тогава отношението f/g също има крайна производна. Това свойство може да се запише като:

.

Позволявам функции y = f(x) и y = g(x) имат крайни производнив точка x 0 . Тогава функции f ± g и f g също имат крайни производни втова точка. Тогава получаваме:

(f ± g) ′ = f ′ ± g ′,

(f g) ′ = f ′ g + f g ′.

Производна на сложна функция.

Позволявам функция y = f(x) има крайна производна в точка x 0 , функцията z = s(y) има крайна производна в точката y 0 = f(x 0).

Тогава сложна функция z = s (f(x)) също има крайна производна в тази точка. Горното може да се запише във формата:

.

Производна на обратната функция.

Нека функцията y = f(x) има обратна функция x = g(y) на някои интервал(a, b) и има различно от нула крайна производнатази функция в точката x 0, принадлежаща на област на дефиниция, т.е. x 0 ∈ (a, b).

Тогава обратна функцияТо има производнав точка y 0 = f(x 0):

.

Производна на неявна функция.

Ако функция y = f(x) е дадено имплицитно уравнение F(x, y(x)) = 0, тогава неговата производнасе намира от условието:

.

Казват, че функция y = f(x) се посочва имплицитно, Ако тя идентичноудовлетворява отношението:

където F(x, y) е някаква функция от два аргумента.

Производна на функция, дефинирана параметрично.

Ако функция y = f(x) се задава параметрично с помощта на разглеждания

Много лесен за запомняне.

Е, нека не отиваме далеч, нека веднага разгледаме обратната функция. Коя функция е обратна на експоненциалната функция? Логаритъм:

В нашия случай основата е числото:

Такъв логаритъм (т.е. логаритъм с основа) се нарича „естествен“ и ние използваме специална нотация за него: пишем вместо това.

На какво е равно? Разбира се, .

Производната на естествения логаритъм също е много проста:

Примери:

  1. Намерете производната на функцията.
  2. Каква е производната на функцията?

Отговори: Експоненциалният и естественият логаритъм са уникално прости функции от производна гледна точка. Експоненциалните и логаритмичните функции с всяка друга основа ще имат различна производна, която ще анализираме по-късно, след като преминем през правилата за диференциране.

Правила за диференциране

Правила на какво? Пак нов мандат, пак?!...

Диференциацияе процесът на намиране на производната.

Това е всичко. Как иначе можете да наречете този процес с една дума? Не производна... Математиците наричат ​​диференциала същото нарастване на функция при. Този термин идва от латинския differentia - разлика. Тук.

Когато извличаме всички тези правила, ще използваме две функции, например и. Ще ни трябват и формули за техните увеличения:

Има общо 5 правила.

Константата се изважда от знака за производна.

Ако - някакво постоянно число (константа), тогава.

Очевидно това правило работи и за разликата: .

Нека го докажем. Нека бъде или по-просто.

Примери.

Намерете производните на функциите:

  1. в точка;
  2. в точка;
  3. в точка;
  4. в точката.

Решения:

  1. (производната е една и съща във всички точки, тъй като е линейна функция, помните ли?);

Производно на продукта

Тук всичко е подобно: нека въведем нова функция и да намерим нейното увеличение:

Производна:

Примери:

  1. Намерете производните на функциите и;
  2. Намерете производната на функцията в точка.

Решения:

Производна на експоненциална функция

Сега знанията ви са достатъчни, за да научите как да намирате производната на всяка експоненциална функция, а не само на експоненти (забравили ли сте вече какво е това?).

И така, къде е някакво число.

Вече знаем производната на функцията, така че нека се опитаме да намалим нашата функция до нова основа:

За целта ще използваме едно просто правило: . Тогава:

Е, проработи. Сега опитайте да намерите производната и не забравяйте, че тази функция е сложна.

Се случи?

Ето, проверете сами:

Формулата се оказа много подобна на производната на експонента: както беше, остава същата, само се появи фактор, който е просто число, но не и променлива.

Примери:
Намерете производните на функциите:

Отговори:

Това е просто число, което не може да се изчисли без калкулатор, тоест не може да се запише в по-прост вид. Затова го оставяме в този вид в отговора.

    Имайте предвид, че тук е частното на две функции, така че прилагаме съответното правило за диференциране:

    В този пример продуктът на две функции:

Производна на логаритмична функция

Тук е подобно: вече знаете производната на естествения логаритъм:

Следователно, за да намерите произволен логаритъм с различна основа, например:

Трябва да намалим този логаритъм до основата. Как се променя основата на логаритъм? Надявам се, че помните тази формула:

Само сега вместо това ще напишем:

Знаменателят е просто константа (постоянно число, без променлива). Производната се получава много просто:

Производни на експоненциални и логаритмични функции почти никога не се срещат в Единния държавен изпит, но няма да е излишно да ги знаете.

Производна на сложна функция.

Какво е "сложна функция"? Не, това не е логаритъм и не е арктангенс. Тези функции могат да бъдат трудни за разбиране (въпреки че ако намирате логаритъма за труден, прочетете темата „Логаритми“ и ще се оправите), но от математическа гледна точка думата „комплексен“ не означава „труден“.

Представете си малка конвейерна лента: двама души седят и извършват някакви действия с някакви предмети. Например, първият увива шоколадово блокче в обвивка, а вторият го завързва с панделка. Резултатът е съставен обект: шоколадово блокче, увито и завързано с панделка. За да изядете блокче шоколад, трябва да направите обратните стъпки в обратен ред.

Нека създадем подобен математически конвейер: първо ще намерим косинуса на число и след това ще повдигнем на квадрат полученото число. И така, получаваме число (шоколад), аз намирам неговия косинус (обвивка), а след това вие повдигате на квадрат полученото (завързвате го с панделка). Какво стана? функция. Това е пример за сложна функция: когато, за да намерим нейната стойност, извършваме първото действие директно с променливата и след това второ действие с това, което е резултат от първото.

С други думи, сложна функция е функция, чийто аргумент е друга функция: .

За нашия пример,.

Можем лесно да направим същите стъпки в обратен ред: първо го повдигате на квадрат, а аз след това търся косинуса на полученото число: . Лесно е да се досетите, че резултатът почти винаги ще бъде различен. Важна характеристика на сложните функции: когато редът на действията се промени, функцията се променя.

Втори пример: (същото нещо). .

Действието, което извършваме последно, ще бъде извикано "външна" функция, а първо извършеното действие - съотв "вътрешна" функция(това са неофициални имена, използвам ги само за да обясня материала на прост език).

Опитайте се да определите сами коя функция е външна и коя вътрешна:

Отговори:Разделянето на вътрешни и външни функции е много подобно на промяната на променливи: например във функция

  1. Какво действие ще извършим първо? Първо, нека изчислим синуса и едва след това го кубираме. Това означава, че това е вътрешна функция, но външна.
    И първоначалната функция е тяхната композиция: .
  2. Вътрешен: ; външен: .
    Преглед: .
  3. Вътрешен: ; външен: .
    Преглед: .
  4. Вътрешен: ; външен: .
    Преглед: .
  5. Вътрешен: ; външен: .
    Преглед: .

Променяме променливи и получаваме функция.

Е, сега ще извлечем нашето шоколадово блокче и ще потърсим производната. Процедурата винаги е обратна: първо търсим производната на външната функция, след това умножаваме резултата по производната на вътрешната функция. Във връзка с оригиналния пример изглежда така:

Друг пример:

И така, нека най-накрая формулираме официалното правило:

Алгоритъм за намиране на производната на сложна функция:

Изглежда просто, нали?

Нека проверим с примери:

Решения:

1) Вътрешен: ;

Външен: ;

2) Вътрешен: ;

(Само не се опитвайте да го отрежете досега! Нищо не излиза изпод косинуса, помните ли?)

3) Вътрешен: ;

Външен: ;

Веднага става ясно, че това е сложна функция на три нива: в крайна сметка това вече е сложна функция сама по себе си и ние също извличаме корена от нея, тоест извършваме третото действие (поставете шоколада в обвивка и с панделка в куфарчето). Но няма причина да се страхувате: ние все пак ще „разопаковаме“ тази функция в същия ред, както обикновено: от края.

Тоест, първо диференцираме корена, след това косинуса и едва след това израза в скоби. И след това умножаваме всичко.

В такива случаи е удобно действията да се номерират. Тоест нека си представим това, което знаем. В какъв ред ще извършим действия за изчисляване на стойността на този израз? Да разгледаме един пример:

Колкото по-късно се извърши действието, толкова по-„външна“ ще бъде съответната функция. Последователността на действията е същата като преди:

Тук гнезденето обикновено е 4-степенно. Да определим хода на действие.

1. Радикален израз. .

2. Корен. .

3. Синус. .

4. Квадрат. .

5. Събираме всичко заедно:

ПРОИЗВОДНО. НАКРАТКО ЗА ГЛАВНОТО

Производна на функция- отношението на нарастването на функцията към увеличението на аргумента за безкрайно малко увеличение на аргумента:

Основни производни:

Правила за диференциация:

Константата се изважда от знака за производна:

Производна на сумата:

Производно на продукта:

Производна на коефициента:

Производна на сложна функция:

Алгоритъм за намиране на производната на сложна функция:

  1. Дефинираме „вътрешната“ функция и намираме нейната производна.
  2. Дефинираме „външната“ функция и намираме нейната производна.
  3. Умножаваме резултатите от първа и втора точка.

Подобни статии