Транскрипция в биологии - это что такое? Рнк получает наследственную информацию Транскрибирование биология

Транскрипция - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.
В процессе транскрипции генов происходит биосинтез молекул РНК, комплементарных одной из цепей матричной ДНК, сопровождаемый полимеризацией четырех рибонуклеозидтрифосфатов (ATP, GTP, CTP и UTP) с образованием 3"–5"-фосфодиэфирных связей и освобождением неорганического пирофосфата.
Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой . Процесс синтеза РНК протекает в направлении от 5"- к 3"- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3"->5"
РНК-полимеразы могут состоять из одной или нескальких субъединиц. У митохондрий и некоторых бактериофагов, например SP6, T7 с небольшим числом генов простых геномов, где отсутствует сложная регуляция РНК-полимераза состоит из одной субъединицы. Для бактерий и эукариот, с большим числом генов и сложными системами регуляции РНК-полимеразы состоят из нескольких субъединиц. Показано, что фаговые РНК-полимеразы состоящие из одной субъединицы могут взаиодействовать с белками бактерий, которые меняют их свойства [Патрушев, 2000].
У прокариот синтез всех видов РНК осуществляется одним и тем же ферментом.
У эукариот - 3 ядерные РНК-полимеразы, митохондриальные РНК-полимеразы, хлоропластные РНК-полимеразы.
Субстратами для РНК-полимераз служат рибонуклеозид-трифосфаты (активированные нуклеотиды). Весь процесс транскрипции осуществляется за счет энергии макроэргических связей актвированных нуклеотидов.

Первый нуклеотид в РНК всегда пурин в форме трифосфата.
Факторы транскрипции - белки взаимодействующие с друг другом, регуляторными участками ДНК и РНК-полимеразой с образованием транскрипционного комплекса и регулирующие транскрипцию. Благодаря факторам транскрипции и регуляторным последовательностям генов становится возможным специфический синтез РНК.
Принципы транскрипции
комплиментарность - mRNA комплиментарна матричной цепи ДНК и аналогична кодирующей цепи ДНК
антипараллельность
униполярность
беззатравочность - РНК-полимераза не требует праймера
асимметричность
Стадии транскрипции

  1. распознавание промотора и связывание - РНК-полимераза связывается с ТАТА-боксом 3’-промотора при помощи основных факторов транскрипции, дополнительные факторы ингибируют или стимулируют присоединение
  2. инициация - образование первой фосфодиэфирной связи между Pu и первым нуклеотидом. К пуринтрифосфату присоед нуклеотид комплиментарный второму нуклеотиду ДНК с отщеплением пирофосфата от нуклеозидтрифосфата с образ диэфирной связи
  3. элонгация (3’→5’)- мРНК гомологичная нематричной (кодирующей, смысловой) ДНК, синтезируется на матричной ДНК; какая из двух цепей ДНК будет матрицей, определяется направлением промотора
  4. терминация

Транскрипционные фабрики

Существует ряд экспериментальных данных, свидетельствующих о том, что транскрипция осуществляется в так называемых транскрипционных фабриках: огромных, по некоторым оценкам, до 10 МДа комплексах, которые содержат около 8 РНК-полимераз II и компоненты последующего процессинга и сплайсинга, а также пруф-ридинга новосинтезированного транскрипта. В ядре клетки происходит постоянный обмен между пулами растворимой и задействованной РНК-полимеразы. Активная РНК-полимераза задействована в таком комплексе, который в свою очередь является структурной организовывающей компактизацию хроматина единицей. Последние данные. свидетельствуют о том, что транскрипционные фабрики существуют и в отсутствие транскрипции, они фиксированы в клетке (пока не ясно, взаимодействуют ли они с матриксом клетки или нет) и представляют собой независимый ядерный субкомпартмент. Попытки выделить белковый функциональный комплекс транскрипционной фабрики пока не привели к успеху ввиду его огромных размеров и низкой растворимости.

В биологии процессы транскрипции и трансляции рассматривают в рамках биосинтеза белка. Хотя в процессе транскрипции никакого синтеза белка не происходит. Но без нее невозможна трансляция (т. е. непосредственный синтез белка). Транскрипция предшествует трансляции.

Протекающие в клетках транскрипция и трансляция согласуются с так называемой догмой молекулярной биологии (выдвинутой Ф. Криком в середине XX века): поток информации в клетках идет в направлении от нуклеиновых кислот (ДНК и РНК) к белкам, но никогда наоборот (то есть от белков к нуклеиновым кислотам). Это значит, что нуклеиновая кислота может служить информационной матрицей для синтеза белка, а белок не может выступать таковой для синтеза нуклеиновой кислоты.

Транскрипция

Транскрипция представляет собой синтез молекулы РНК на молекуле ДНК . То есть ДНК служит матрицей для синтеза РНК.

Транскрипция катализируется рядом ферментов, наиболее важный РНК-полимераза. Следует помнить, что ферменты - это в основном белки (это касается и РНК-полимеразы).

РНК-полимераза движется по двойной цепи ДНК, разъединяет цепочки и на одной из них по принципу комплементарности строит молекулу РНК из плавающих в ядре нуклеотидов. Таким образом, РНК по-сути идентична участку другой цепи ДНК (на которой не происходит синтез), так как цепи молекулы ДНК также комплементарны друг другу. Только в РНК тимин заменен на урацил.

Синтез нуклеиновых кислот происходит в направлении от 5"-конца молекул к их 3"-концу. При этом комплементарные цепи всегда антипараллельны (направлены в разные стороны). Поэтому сама РНК синтезируется в направлении 5"→3", но по цепи ДНК движется в ее направлении 3"→5".

Участок ДНК, на котором происходит транскрипция (транскриптон, оперон), состоит из трех частей: промотора, гена (в случае иРНК, вообще - транскрибируемой части) и терминатора.

Для инициации (начала) транскрипции нужны различные белковые факторы, которые прикрепляются к промотору, после чего к ДНК может быть присоединена РНК-полимераза.

Терминация (окончание) транскрипции происходит после того, как РНК-полимераза встретит один из стоп-кодонов.

У клеток эукариот транскрипция происходит в ядре. После синтеза молекулы РНК здесь же подвергаются созреванию (из них вырезаются ненужные участки, молекулы принимают соответствующую им вторичную и третичную структуру). Далее различные типы РНК выходят в цитоплазму, где участвуют в следующем после транскрипции процессе – трансляции.

Трансляция

Трансляция представляет собой синтез полипептидной (белковой) цепи на молекуле информационной (она же матричная) РНК. По-другому трансляцию можно описать как перевод информации, закодированной с помощью нуклеотидов (триплетов-кодонов), в информацию, представленную в виде последовательности аминокислот. Этот процесс протекает при участии рибосом (в состав которых входит рибосомальная РНК) и транспортной РНК. Таким образом, в непосредственном синтезе белка принимают участие все три основных типа РНК .

При трансляции рибосомы насаживаются на начало цепи иРНК и далее движутся по ней в направлении к ее концу. При этом происходит синтез белка.

Внутри рибосомы есть два «места», где могут поместиться две тРНК. Транспортные РНК, заходящие в рибосому, несут одну аминокислоту. Внутри рибосомы синтезируемая полипептидная цепь присоединяется к вновь прибывшей аминокислоте, связанной с тРНК. После чего эта тРНК передвигается на другое «место», из него же удаляется «старая», уже свободная от растущей полипепдидной цепи тРНК. На освободившееся место приходит еще одна тРНК с аминокислотой. И процесс повторяется.

Активный центр рибосомы катализирует образование пептидной связи между вновь прибывшей аминокислотой и ранее синтезированным участком белка.

В рибосому помещаются два кодона (всего 6 нуклеотидов) иРНК. Антикодоны тРНК, заходящих в рибосому, должны быть комплементарны кодонам, на которых «сидит» рибосома. Разным аминокислотам соответствуют разные тРНК (различающиеся своими антикодонами).

Таким образом, каждая тРНК несет свою аминокислоту. При этом следует иметь в виду, что аминокислот, принимающих участие в биосинтезе белка, всего около 20, а смысловых (обозначающих аминокислоту) кодонов около 60-ти. Следовательно, одну аминокислоту могут переносить разные тРНК, но их антикодоны соответствуют одной и той же аминокислоте.

1. Инициация - первый этап транскрипции, в ходе которого происходит связывание РНК-полимеразы с промотором и образование первой межнуклеотидной связи.

У бактерий холофермент РНК-полимераза непосредственно узнает определенные последовательности нуклеотидных пар в составе промотора: последовательность 5-ТАТААТ-3 (расположена на расстоянии 10 нуклеотидов от точки начала транскрипции и называется боксом Прибнова) и последовательность 5-ТТГАЦА-3 (удалена от точки начала транскрипции на 35 нуклеотидов). В некоторых оперонах, например в лактозном, необходимо предварительное взаимодействие с промотором дополнительного белка (САР изменяет структуру промотора, резко повышая его сродство к РНК-полимеразе).

РНК-полимеразы эукариот не способны самостоятельно связываться с промоторами транскрибируемых генов. В присоединении к транскриптонам РНК-полимераз принимают участие общие факторы транскрипции (TF). Они отличаются от σ-факторов прокариот тем, что могут связываться с ДНК независимо от РНК-полимеразы. Полимеразы I, II и III требуют присутствия разных факторов транскрипции, обозначаемых TF I, TF II и TF III соответственно. Промоторы эукариот устроены более сложно, чем прокариотические, и состоят из нескольких элементов. Из низ самым близким к точке начала транскрипции является ТАТА-домен, называемый также доменом Хогнесса. Затем следуют домены ЦААТ и ГЦ. Промоторы эукариот могут содержать различные комбинации этих элементов, но ни один из них не встречается во всех промоторах. Домен ЦААТ играет существенную роль в инициации транскрипции, ТАТА и ГЦ, по-видимому, выполняют вспомогательные функции.

Связавшись с промотором, РНК-полимераза вызывает локальную денатурацию ДНК, т. е. разделение цепей ДНК на протяжении примерно 15 нуклеотидных пар. Образуется транскрипционный «глазок». Первым в строящуюся цепь РНК включается пуриновый нуклеотид - АТФ или ГТФ, при этом все три его фосфатных остатка сохраняются. После образования первой фосфодиэфирной связи σ-фактор у бактерий теряет связь с ферментом, и оставшийся core -фермент начинает перемещаться по ДНК. РНК-полимераза эукариот после инициации транскрипции также теряет связь с транскрипционными факторами и перемещается по ДНК самостоятельно.

2. Элонгация - последовательное удлинение растущей цепи РНК. Перемещаясь вдоль двойной спирали ДНК, РНК-полимераза непрерывно раскручивает спираль впереди того участка, где происходит синтез РНК . На короткое время образуется так называемый открытый комплекс, внутри которого возникает РНК-ДНК-спираль длиной около 20 нуклеотидов
(рис. 30). Затем фермент (с помощью специального сайта) вновь закручивает


Рис. 30. Элонгация транскрипции

ДНК позади участка полимеризации. РНК-транскрипт выводится из комплекса через особый канал, свойственный РНК-полимеразе.

Скорость синтеза РНК у бактерий составляет около 30 нуклеотидов в секунду, однако она не постоянна и может несколько снижаться. Такие периоды называют паузами транскрипции.

Показано, что еще до образования гибрида РНК-ДНК РНК-полимераза переводит ДНК из В-формы в А-форму. В ней плоскости азотистых оснований не перпендикулярны оси спирали, а наклонены на 20 0 к перпендикуляру. Вероятно, это облегчает разъединение двух соседних азотистых оснований в цепи ДНК. Параметры РНК-ДНК-спирали также практически полностью идентичны характеристикам А-формы ДНК.

3. Терминация (окончание транскрипции) определяется особой нуклеотидной последовательностью ДНК, расположенной в зоне терминатора оперона.

В бактериальных оперонах выделяют два типа терминаторов:

- ρ (ро) - независимые терминаторы (I типа);

- ρ - зависимые терминаторы (II типа).

Рис. 31. ρ- независимая терминация транскрипции у бактерий

ρ-независимые терминаторы состоят из последовательностей, представляющих собой инвертированный повтор - палиндром (рис. 31), и располагаются за 16-20 нуклеотидных пар от точки терминации. Палиндромы (последовательности, которые читаются одинаково слева направо и справа налево) ρ- независимых терминаторов содержат большое количество Г-Ц-повторов. За этим участком на матричной цепи расположена олиго (А) - последовательность (4-8 адениловых нуклеотидов подряд). Транскрипция в области палиндрома приводит к тому, что в получившемся РНК-транскрипте быстро образуется устойчивый элемент вторичной структуры - «шпилька» - спирализованная область, содержащая комплементарные

Г-Ц-пары. «Шпилька» нарушает прочность связи ДНК-РНК в открытом комплексе. Кроме этого транскрипция олиго(А)-последовательности в матричной цепи ведет к образованию участка ДНК-РНК-гибрида, составленного из непрочных А-У пар, что также способствует разрушению контакта между ДНК и РНК.

ρ-зависимые терминаторы. Одним из факторов транскрипции прокариот является белок ρ . ρ -фактор - это имеющий четвертичную структуру белок, обладающий АТФ-азной активностью. Он способен связываться с 5-концом синтезируемой РНК длиной около 50 нуклеотидов. ρ -фактор движется по РНК с такой же скоростью, с которой РНК-полимераза движется по ДНК. Вследствие того что в терминаторе много Г-Ц-пар (с тремя водородными связями), РНК-полимераза в области терминатора замедляет ход, ρ -фактор ее догоняет, изменяет конформацию фермента, и синтез РНК прекращается (рис. 32).

На терминаторах обоих типов происходят три ключевых события:

Останавливается синтез РНК;

Цепь РНК освобождается от ДНК;

РНК-полимераза освобождается от ДНК.

Транскрипция

Общие сведения

Транскрипция - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.
В процессе транскрипции генов происходит биосинтез молекул РНК, комплементарных одной из цепей матричной ДНК, сопровождаемый полимеризацией четырех рибонуклеозидтрифосфатов (ATP, GTP, CTP и UTP) с образованием 3"–5"-фосфодиэфирных связей и освобождением неорганического пирофосфата.
Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой . Процесс синтеза РНК протекает в направлении от 5"- к 3"- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3"->5"
РНК-полимеразы могут состоять из одной или нескальких субъединиц. У митохондрий и некоторых бактериофагов, например SP6, T7 с небольшим числом генов простых геномов, где отсутствует сложная регуляция РНК-полимераза состоит из одной субъединицы. Для бактерий и эукариот, с большим числом генов и сложными системами регуляции РНК-полимеразы состоят из нескольких субъединиц. Показано, что фаговые РНК-полимеразы состоящие из одной субъединицы могут взаиодействовать с белками бактерий, которые меняют их свойства [Патрушев, 2000].
У прокариот синтез всех видов РНК осуществляется одним и тем же ферментом.
У эукариот - 3 ядерные РНК-полимеразы, митохондриальные РНК-полимеразы, хлоропластные РНК-полимеразы.
Субстратами для РНК-полимераз служат рибонуклеозид-трифосфаты (активированные нуклеотиды). Весь процесс транскрипции осуществляется за счет энергии макроэргических связей актвированных нуклеотидов.

Первый нуклеотид в РНК всегда пурин в форме трифосфата.
Факторы транскрипции - белки взаимодействующие с друг другом, регуляторными участками ДНК и РНК-полимеразой с образованием транскрипционного комплекса и регулирующие транскрипцию. Благодаря факторам транскрипции и регуляторным последовательностям генов становится возможным специфический синтез РНК.
Принципы транскрипции
комплиментарность - mRNA комплиментарна матричной цепи ДНК и аналогична кодирующей цепи ДНК
антипараллельность
униполярность
беззатравочность - РНК-полимераза не требует праймера
асимметричность
Стадии транскрипции

  1. распознавание промотора и связывание - РНК-полимераза связывается с ТАТА-боксом 3’-промотора при помощи основных факторов транскрипции, дополнительные факторы ингибируют или стимулируют присоединение
  2. инициация - образование первой фосфодиэфирной связи между Pu и первым нуклеотидом. К пуринтрифосфату присоед нуклеотид комплиментарный второму нуклеотиду ДНК с отщеплением пирофосфата от нуклеозидтрифосфата с образ диэфирной связи
  3. элонгация (3’→5’)- мРНК гомологичная нематричной (кодирующей, смысловой) ДНК, синтезируется на матричной ДНК; какая из двух цепей ДНК будет матрицей, определяется направлением промотора
  4. терминация

Транскрипционные фабрики

Существует ряд экспериментальных данных, свидетельствующих о том, что транскрипция осуществляется в так называемых транскрипционных фабриках: огромных, по некоторым оценкам, до 10 МДа комплексах, которые содержат около 8 РНК-полимераз II и компоненты последующего процессинга и сплайсинга, а также пруф-ридинга новосинтезированного транскрипта. В ядре клетки происходит постоянный обмен между пулами растворимой и задействованной РНК-полимеразы. Активная РНК-полимераза задействована в таком комплексе, который в свою очередь является структурной организовывающей компактизацию хроматина единицей. Последние данные. свидетельствуют о том, что транскрипционные фабрики существуют и в отсутствие транскрипции, они фиксированы в клетке (пока не ясно, взаимодействуют ли они с матриксом клетки или нет) и представляют собой независимый ядерный субкомпартмент. Попытки выделить белковый функциональный комплекс транскрипционной фабрики пока не привели к успеху ввиду его огромных размеров и низкой растворимости.

Транскрипция у эукариот

РНК-полимеразы эукариот

У эукариот имеется 3 типа РНК-полимераз (не считая митохондриальной и хлоропластной):
РНК полимеразаI - синтезирует в ядрышках рибосомные RNA (18S и 28S рРНК, кроме 5S);
РНК-полимеразаII - синтезирует mRNA и некоторых sRNA;
РНК-полимеразаIII - синтезирует tRNA, sRNA, 5S rRNA.
RNA-полимеразы эукариот отличаются: количеством субъединиц – 2 большие (120-220кДа) и до 8 малых (10-100кДа), потребностью в ионах Mg и Mn, чувствительностью к – амонитину - токсину бледной поганки - пептиду включающему D-аминокислоты: polI - устойчива, polII - ингибируется при концентрации 10-8М, polIII - при 10-6М амонитина. РНК-полимеразы I,II,III кодируются в ядре. Большие субъединицы гомологичны β и β`-субъединицам эубактерий.

РНК-полимераза I

РНК-полимераза II

PolII Человека содержит более 10 субъединиц, слабо ассоциирующих друг с другом. Некоторые из них принадлежат к основным факторам транскрипции (GTF).
Белки holo-фермента PolII дрожжей [Патрушев, 2000].
Pol II - РНК-Полимеразная активность, взаимодействует с множеством общих и тканеспецифических факторов транскрипции, участвует в выборе точки инициации транскрипции.
TFIIB - Связывает Pol II и TBP на промоторе, участвует в выборе точки инициации транскрипции
TFIIF - Взаимодействует с Pol II, стимулирует элонгацию транскрипции Pol II, компонент субкомплекса SRB/медиатор
TFIIH - Активность ДНК-зависимой ATPазы, ДНК-геликазная активность, обладает активностью CTD-киназы
SRB2, SRB5
взаимодействуют с TBP, компоненты субкомплекса SRB/медиатор
GAL11/SPT13 - Участвуют в образовании инициационного комплекса, стимулируют базальный и индуцированный синтез РНК,
компоненты субкомплекса SRB/медиатор, предположительно взаимодействуют с активаторами транскрипции
SUG1 - Компонент субкомплекса SRB/медиатор, предположительно взаимодействует с активаторами транскрипции
SRB4, SRB6, SRB7, SRB8, SRB9, SRB10, SRB11 - Компоненты субкомплекса SRB/медиатор, предположительно
взаимодействуют с CTD-доменом Pol II

РНК-полимераза III

Факторы транскрипции

Инициация

Инициация транскрипции происходит на кэп-сайте кодирующем первый нуклеодид первого экзона мРНК.
ТАТА-бокс локализуется в 25-30 пн выше кэп-сайта связывая РНК-полимеразу перед кэп-сайтом. Промотор - примерно 200 пн выше кэп-сайта. Энхансеры обычно имеют длину 100-200 пн.

Элонгация

Терминация

Терминация на сайте полиаденилирования.

Вновь синтезированная РНК генов связывается с ядерными белками - информомерами, подвергается различным посттранскрипционным модификациям и транспортируется из ядра (см. обзор Процессинг) для последующей трансляции (см. обзор Трансляция).

Транскрипция у прокариот

РНК-полимераза E.coli

РНК-полимераза E.coli осуществляет транскрипцию всех бактериальных генов и состоит из нескольких субъединиц: α-35кДа, β‘-165кДа, β-155кДа, σ-чаще 70кДа (σ70). РНК-полимераза состава ααββ’σ70 называется holo-фермент (Еσ70), состава ααββ’- core-фермент (E).
σ - сменный фактор специфичности, который диссоциирует после инициации транскрипции. Элонгация и терминация осуществляется core-ферментом. У Е.coli ~10 видов σ-субъединиц. Транскрипция генов теплового шока, оперонов gln или nif осуществляется σ54 в составе holo-фермента Eσ54 (54 кДа).
Все субъединицы заряжены отрицательно: σ>α>β>β’ – расположены по убыванию заряда. В каждой субъединице имеется кластер (+)-заряженных участков, которыми они связываются с ДНК. Наибольшее число кластеров у – β’, который участвует в связывании фермента с ДНК, β-субъединица содержит активные центры - инициации и элонгации, α-субъединицы обеспечивают правильное взаимодействие фермента с промоторами. Рифампицин – блокирует инициацию, стрептолидигин – блокирует элонгацию, что говорит о разнесении активных центров в РНК-полимеразе.
Узнавание и связывание RNA-pol с промотором осуществляется holo-ферментом
Одновременно в клетке присутствует около 7000 молекул РНК-полимеразы. Только holo-фермент обладает высоким сродством к специфической последовательности нуклеотидов - промотору, сродство к остальным случайным последовательностям ДНК у него снижено в 10000 раз. У core-фермента одинаковое сродство к любой последовательности нуклеотидов.
Сам по себе сигма - фактор обладает наименьшим сродством к ДНК по сравнению с другими субьединицами РНК-полимеразы, однако он придает holo-ферменту такую конформацию, которая обладает повышенным сродством к промотору.
Стадии узнавания и связывания, а также инициации осуществляются holo-ферментом. Элонгация и терминация осуществляются core-ферментом.
Две α субъединицы - каркас РНК-полимеразы. К ним крепятся остальные субъединицы.
β" - субъединица отвечает за прочное связывание с ДНК за счет кластера положительно заряженных аминокислот.
В β - субъединице находятся два каталитических центра. Один отвечает за инициацию, а другой - за элонгацию. Один центр работает в holo-, а другой - в core- ферменте.

Инициация транскрипции

РНК-полимераза Ecoli узнает два 6н разделенных 25н

Элонгация транскрипции

Терминация транскрипции

Регуляция транскрипции

Схема негативной индукции Жакоба и Моно

Lac-оперон E. coli содержит 3 гена, отвечающие за образование белков, участвующих в переносе в клетку дисахарида лактозы и в ее расщеплении.
Z-β - галактозидаза (расщепляет лактозу на глюкозу и галактозу).
Y-β- галактозидпермеаза (переносит лактозу через мембрану клетки).
А - тиогалактозидтрансацетилаза (ацетилирует галактозу).
В отсутствие в клетке лактозы lac-оперон выключен. Активный белок - репрессор, кодируемый в моноцистронном опероне (LacI) , не имеющем оператора, связан с оператором lac-оперона. Поскольку оператор перекрывается с промотором, даже посадка РНК-полимеразы на промотор невозможна.
Как только некоторое количество лактозы попадает в клетку, две молекулы субстрата (лактозы) взаимодействуют с белком - репрессором, изменяют его конформацию - и он теряеет сродство к оператору.
Тут же начинается транскрипция lac-оперона и трансляция образующейся mРНК; три синтезируемых белка участвуют в утилизации лактозы.
Когда вся лактоза переработана, очередная порция репрессора, свободного от лактозы, выключает lac-оперон.

Схема позитивной индукции


В Аra-опероне E. сoli 3 цистрона, которые кодируют ферменты, расщепляющие сахар арабинозу. В норме оперон закрыт. Белок - репрессор связан с оператором.

Когда в клетку попадает арабиноза, она взаимодействует с белком - репрессором. Белок - репрессор меняет конформацию и превращается из репрессора в активатор, взаимодейсивующий с промотором и облегчающий посадку РНК-полимеразы на промотор.
Эта схема регуляции называется позитивной индукцией, поскольку контролирующий элемент - белок - активатор "включает" работу оперона.

С понятием транскрипции мы встречаемся, изучая иностранный язык. Она помогает нам правильно переписывать и произносить неизвестные слова. Что понимают под этим термином в естествознании? Транскрипция в биологии - это ключевой процесс в системе реакций биосинтеза белка. Именно он позволяет клетке обеспечивать себя пептидами, которые будут выполнять в ней строительную, защитную, сигнальную, транспортную и другие функции. Только переписывание информации с локуса ДНК на молекулу информационной рибонуклеиновой кислоты запускает белоксинтезирующий аппарат клетки, обеспечивающий биохимические реакции трансляции.

В данной статье мы рассмотрим этапы транскрипции и синтеза белка, протекающие у различных организмов, а также определим значение этих процессов в молекулярной биологии. Кроме этого, мы дадим определение, что такое транскрипция. В биологии знания по интересующим нас процессам можно получить из таких ее разделов, как цитология, молекулярная биология, биохимия.

Особенности реакций матричного синтеза

Для тех, кто знаком с основными типами химических реакций, изучаемые в курсе общей химии, процессы матричного синтеза окажутся совершенно новыми. Причина здесь следующая: такие реакции, протекающие в живых организмах, обеспечивают копирование материнских молекул с использованием специального кода. Его открыли не сразу, лучше сказать, что сама идея существования двух разных языков для хранения наследственной информации, пробивала себе путь на протяжении двух столетий: с конца 19 и до середины 20. Чтобы лучше представить, что такое транскрипция и трансляция в биологии и почему они относятся к реакциям матричного синтеза, обратимся для аналогии к технической лексике.

Все как в типографии

Представьте, что нам нужно напечатать, например, сто тысяч экземпляров популярной газеты. Весь материал, который войдет в нее, собирают на материнский носитель. Этот первый образец называется матрицей. Затем на типографских станках его тиражируют - снимают копии. Аналогичные процессы протекают и в живой клетке, только матрицами в ней поочередно служат молекулы ДНК и и-РНК, а копиями - информационная РНК и молекулы белков. Давайте рассмотрим их подробнее и выясним, что транскрипцией в биологии называется реакция матричного синтеза, протекающая в клеточном ядре.

Генетический код - ключ к тайне биосинтеза белка

В современной молекулярной биологии уже никто не спорит о том, какое вещество является носителем наследственных свойств и хранит данные обо всех без исключения белках организма. Конечно же, это дезоксирибонуклеиновая кислота. Однако она построена из нуклеотидов, а белки, информация о составе которых в ней хранится, представлены молекулами аминокислот, не имеющими никакого химического сродства с мономерами ДНК. Иными словами, мы имеем дело с двумя разными языками. В одном из них слова - это нуклеотиды, в другом - аминокислоты. Что же выступит в роли переводчика, который осуществит перекодировку информации, полученной в результате транскрипции? Молекулярная биология считает, что эту роль выполняет генетический код.

Уникальные свойства клеточного кода

Вот что представляет собой код, таблица которого представлена ниже. Над его созданием трудились цитологи, генетики, биохимики. Кроме того, в разработке кода использовали знания из криптографии. Учитывая его правила, можно установить первичную структуру синтезированного белка, ведь трансляция в биологии - это процесс перевода информации о структуре пептида с языка нуклеотидов и-РНК на язык аминокислот белковой молекулы.

Идея кодирования в живых организмах впервые была озвучена Г. А. Гамовым. Дальнейшие научные разработки привели к формулировке основных его правил. Сначала установили, что строение 20 аминокислот зашифровано в 61 триплете информационной РНК, что привело к понятию вырожденности кода. Далее выяснили состав нонснес-кодонов, выполняющих роль старта и остановки процесса биосинтеза белка. Затем появились положения о его коллинеарности и универсальности, завершившие стройную теорию генетического кода.

Где происходит транскрипция и трансляция?

В биологии несколько ее разделов, изучающих строение и биохимические процессы в клетке (цитология и молекулярная биология), определили локализацию реакций матричного синтеза. Так, транскрипция происходит в ядре с участием фермента РНК-полимеразы. В его кариоплазме из свободных нуклеотидов по принципу комплементарности синтезируется молекула и-РНК, списывающая информацию о строении пептида с одного структурного гена.

Затем она через поры в ядерной оболочке выходит из клеточного ядра и оказывается в цитоплазме клетки. Здесь и-РНК должна соединиться с несколькими рибосомами, чтобы сформировать полисому - структуру, готовую встретить молекулы транспортных рибонуклеиновых кислот. Их задача - принести аминокислоты к месту еще одной реакции матричного синтеза - трансляции. Рассмотрим механизмы обеих реакций подробно.

Особенности образования молекул и-РНК

Транскрипция в биологии - это переписывание информации о строении пептида со структурного гена ДНК на молекулу рибонуклеиновой кислоты, которая называется информационной. Как мы уже говорили ранее, она происходит в ядре клетки. Вначале фермент ДНК-рестриктаза разрывает водородные связи, соединяющие цепи дезоксирибонуклеиновой кислоты, и ее спираль расплетается. К свободным полинуклеотидным участкам присоединяется фермент РНК-полимераза. Он активирует сборку копии - молекулы и-РНК, которая кроме информативных участков - экзонов - содержит еще и пустые последовательности нуклеотидов - интроны. Они являются балластом и требуют удаления. Этот процесс в молекулярной биологии называют процессингом или созреванием. На нем завершается транскрипция. Биология кратко объясняет это следующим образом: только потеряв ненужные мономеры, нуклеиновая кислота сможет покинуть ядро и будет готовой к дальнейшим этапам биосинтеза белка.

Обратная транскрипция у вирусов

Неклеточные формы жизни разительно отличаются от прокариотических и эукариотических клеток не только своим внешним и внутренним строением, но и реакциями матричного синтеза. В семидесятых годах прошлого столетия наука доказала существование ретровирусов - организмов, геном которых состоит из двух цепей РНК. Под действием фермента - ревертазы - такие вирусные частицы копируют с участков рибонуклеиновой кислоты молекулы ДНК, которые затем внедряются в кариотип клетки-хозяина. Как видим, списывание наследственной информации в этом случае идет в обратном направлении: от РНК к ДНК. Такая форма кодирования и считывания характерна, например, для патогенных агентов, вызывающих различные виды онкологических заболеваний.

Рибосомы и их роль в клеточном метаболизме

Реакции пластического обмена, к которым относится и биосинтез пептидов, протекают в цитоплазме клетки. Чтобы получить готовую молекулу протеина, недостаточно скопировать последовательность нуклеотидов со структурного гена и перенести ее в цитоплазму. Необходимы также структуры, которые займутся считыванием информации и обеспечат соединение аминокислот в единую цепь посредством пептидных связей. Это рибосомы, строению и функциям которых большое внимание уделяет молекулярная биология. Где происходит транскрипция, мы уже выяснили - это кариоплазма ядра. Место процессов трансляции - клеточная цитоплазма. Именно в ней расположены каналы эндоплазматической сети, на которой группами сидят белоксинтезирующие органеллы - рибосомы. Однако и их наличие еще не обеспечивает начало пластических реакций. Нужны структуры, которые доставят к полисоме молекулы-мономеры белков - аминокислоты. Их называют транспортными рибонуклеиновыми кислотами. Что они собой представляют и какова их роль в трансляции?

Переносчики аминокислот

Небольшие молекулы транспортных РНК в своей пространственной конфигурации имеют участок, состоящий из последовательности нуклеотидов - антикодон. Для осуществления трансляционных процессов нужно, чтобы возник инициативный комплекс. Он должен включать триплет матрицы, рибосомы и комплементарный участок транспортной молекулы. Как только такой комплекс организовался - это сигнал к началу сборки белкового полимера. Как трансляция, так и транскрипция в биологии - это процессы ассимиляции, всегда происходящие с поглощением энергии. Для их осуществления клетка готовится заранее, аккумулируя большое количество молекул аденозинтрифосфорной кислоты.

Синтез этого энергетического вещества происходит в митохондриях - важнейших органеллах всех без исключения эукариотических клеток. Он предшествует началу реакций матричного синтеза, занимая место в пресинтетической стадии жизненного цикла клетки и после реакций репликации. Расщепление молекул АТФ сопровождает транскрипционные процессы и реакции трансляции, высвободившаяся при этом энергия используется клеткой на всех этапах биосинтеза органических веществ.

Стадии трансляции

В начале реакций, приводящих к образованию полипептида, 20 видов мономеров белка связываются с определенными молекулами транспортных кислот. Параллельно в клетке происходит образование полисомы: рибосомы присоединяются к матрице в месте расположения старт-кодона. Запуск биосинтеза начинается, и рибосомы передвигаются по триплетам и-РНК. К ним подходят молекулы, транспортирующие аминокислоты. Если кодон в полисоме комплементарен антикодону транспортных кислот, то аминокислота остается в рибосоме, и образующаяся полипептидная связь соединяет ее с уже находящимися там аминокислотами. Как только белоксинтезирующая органелла доходит до стоп-триплета (обычно это УАГ, УАА или УГА), трансляция прекращается. В итоге рибосома вместе с белковой частицей отделяется от и-РНК.

Как пептид приобретает свою нативную форму

Последним этапом трансляции является процесс перехода первичной структуры белка в третичную форму, имеющую вид глобулы. Ферменты удаляют в ней ненужные аминокислотные остатки, присоединяют моносахариды или липидны, а также дополнительно синтезируют карбоксильные и фосфатные группы. Все это происходит в полостях эндоплазматического ретикулума, куда пептид поступает после завершения биосинтеза. Далее нативная белковая молекула переходит в каналы. Они пронизывают цитоплазму и способствуют тому, чтобы пептид попал в определенный участок цитоплазмы и далее использовался для потребностей клетки.

В данной статье мы выяснили, что трансляция и транскрипция в биологии - это основные реакции матричного синтеза, лежащие в основе сохранения и передачи наследственных задатков организма.

Похожие статьи