Y x 4 derivative. Derivative of e to the x power and exponential function. The constant is taken out of the derivative sign

The process of finding the derivative of a function is called differentiation. The derivative has to be found in a number of problems in the course mathematical analysis. For example, when finding extremum and inflection points of a function graph.

How to find?

To find the derivative of a function you need to know the table of derivatives elementary functions and apply the basic rules of differentiation:

  1. Moving the constant beyond the sign of the derivative: $$ (Cu)" = C(u)" $$
  2. Derivative of the sum/difference of functions: $$ (u \pm v)" = (u)" \pm (v)" $$
  3. Derivative of the product of two functions: $$ (u \cdot v)" = u"v + uv" $$
  4. Derivative of a fraction: $$ \bigg (\frac(u)(v) \bigg)" = \frac(u"v - uv"))(v^2) $$
  5. Derivative of a complex function: $$ (f(g(x)))" = f"(g(x)) \cdot g"(x) $$

Examples of solutions

Example 1
Find the derivative of the function $ y = x^3 - 2x^2 + 7x - 1 $
Solution

The derivative of the sum/difference of functions is equal to the sum/difference of derivatives:

$$ y" = (x^3 - 2x^2 + 7x - 1)" = (x^3)" - (2x^2)" + (7x)" - (1)" = $$

Using the rule for the derivative of a power function $ (x^p)" = px^(p-1) $ we have:

$$ y" = 3x^(3-1) - 2 \cdot 2 x^(2-1) + 7 - 0 = 3x^2 - 4x + 7 $$

It was also taken into account that the derivative of a constant is equal to zero.

If you cannot solve your problem, then send it to us. We will provide detailed solution. You will be able to view the progress of the calculation and gain information. This will help you get your grade from your teacher in a timely manner!

Answer
$$y" = 3x^2 - 4x + 7 $$

Date: 11/20/2014

What is a derivative?

Table of derivatives.

Derivative is one of the main concepts of higher mathematics. In this lesson we will introduce this concept. Let's get to know each other, without strict mathematical formulations and proofs.

This acquaintance will allow you to:

Understand the essence of simple tasks with derivatives;

Successfully solving these very problems difficult tasks;

Prepare for more serious lessons on derivatives.

First - a pleasant surprise.)

The strict definition of the derivative is based on the theory of limits and the thing is quite complicated. This is upsetting. But the practical application of derivatives, as a rule, does not require such extensive and deep knowledge!

To successfully complete most tasks at school and university, it is enough to know just a few terms- to understand the task, and just a few rules- to solve it. That's all. This makes me happy.

Let's start getting acquainted?)

Terms and designations.

There are many different mathematical operations in elementary mathematics. Addition, subtraction, multiplication, exponentiation, logarithm, etc. If you add one more operation to these operations, elementary mathematics becomes higher. This new operation is called differentiation. The definition and meaning of this operation will be discussed in separate lessons.

It is important to understand here that differentiation is simply a mathematical operation on a function. We take any function and, according to certain rules, transform it. The result will be a new function. This new function is called: derivative.

Differentiation- action on a function.

Derivative- the result of this action.

Just like, for example, sum- the result of addition. Or private- the result of division.

Knowing the terms, you can at least understand the tasks.) The formulations are as follows: find the derivative of a function; take the derivative; differentiate the function; calculate derivative and so on. This is all same. Of course, there are also more complex tasks, where finding the derivative (differentiation) will be just one of the steps in solving the problem.

The derivative is indicated by a dash at the top right of the function. Like this: y" or f"(x) or S"(t) and so on.

Reading igrek stroke, ef stroke from x, es stroke from te, well, you understand...)

A prime can also indicate the derivative of a particular function, for example: (2x+3)", (x 3 )" , (sinx)" etc. Often derivatives are denoted using differentials, but we will not consider such notation in this lesson.

Let's assume that we have learned to understand the tasks. All that’s left is to learn how to solve them.) Let me remind you once again: finding the derivative is transformation of a function according to certain rules. Surprisingly, there are very few of these rules.

To find the derivative of a function, you need to know only three things. Three pillars on which all differentiation stands. Here they are these three pillars:

1. Table of derivatives (differentiation formulas).

3. Derivative of a complex function.

Let's start in order. In this lesson we will look at the table of derivatives.

Table of derivatives.

There are an infinite number of functions in the world. Among this variety, there are functions that are most important for practical application. These functions are found in all laws of nature. From these functions, like from bricks, you can construct all the others. This class of functions is called elementary functions. It is these functions that are studied at school - linear, quadratic, hyperbola, etc.

Differentiation of functions "from scratch", i.e. Based on the definition of derivative and the theory of limits, this is a rather labor-intensive thing. And mathematicians are people too, yes, yes!) So they simplified their (and us) life. They calculated the derivatives of elementary functions before us. The result is a table of derivatives, where everything is ready.)

Here it is, this plate for the most popular functions. On the left is an elementary function, on the right is its derivative.

Function
y
Derivative of function y
y"
1 C ( constant) C" = 0
2 x x" = 1
3 x n (n - any number) (x n)" = nx n-1
x 2 (n = 2) (x 2)" = 2x
4 sin x (sin x)" = cosx
cos x (cos x)" = - sin x
tg x
ctg x
5 arcsin x
arccos x
arctan x
arcctg x
4 a x
e x
5 log a x
ln x ( a = e)

I recommend paying attention to the third group of functions in this table of derivatives. The derivative of a power function is one of the most common formulas, if not the most common! Do you get the hint?) Yes, it is advisable to know the table of derivatives by heart. By the way, this is not as difficult as it might seem. Try to solve by more examples, the table itself will be remembered!)

Finding the table value of the derivative, as you understand, is not the most difficult task. Therefore, very often in such tasks there are additional chips. Either in the wording of the task, or in the original function, which doesn’t seem to be in the table...

Let's look at a few examples:

1. Find the derivative of the function y = x 3

There is no such function in the table. But there is a derivative of the power function in general view(third group). In our case n=3. So we substitute three instead of n and carefully write down the result:

(x 3) " = 3 x 3-1 = 3x 2

That's it.

Answer: y" = 3x 2

2. Find the value of the derivative of the function y = sinx at the point x = 0.

This task means that you must first find the derivative of the sine, and then substitute the value x = 0 into this very derivative. Exactly in that order! Otherwise, it happens that they immediately substitute zero into the original function... We are asked to find not the value of the original function, but the value its derivative. The derivative, let me remind you, is a new function.

Using the tablet we find the sine and the corresponding derivative:

y" = (sin x)" = cosx

We substitute zero into the derivative:

y"(0) = cos 0 = 1

This will be the answer.

3. Differentiate the function:

What, does it inspire?) There is no such function in the table of derivatives.

Let me remind you that to differentiate a function is simply to find the derivative of this function. If you forget elementary trigonometry, looking for the derivative of our function is quite troublesome. The table doesn't help...

But if we see that our function is double angle cosine, then everything gets better right away!

Yes Yes! Remember that transforming the original function before differentiation quite acceptable! And it happens to make life a lot easier. Using the double angle cosine formula:

Those. our tricky function is nothing more than y = cosx. And this is - table function. We immediately get:

Answer: y" = - sin x.

Example for advanced graduates and students:

4. Find the derivative of the function:

There is no such function in the derivatives table, of course. But if you remember elementary mathematics, operations with powers... Then it is quite possible to simplify this function. Like this:

And x to the power of one tenth is already a tabular function! Third group, n=1/10. We write directly according to the formula:

That's all. This will be the answer.

I hope that everything is clear with the first pillar of differentiation - the table of derivatives. It remains to deal with the two remaining whales. In the next lesson we will learn the rules of differentiation.

The operation of finding the derivative is called differentiation.

As a result of solving problems of finding derivatives of the simplest (and not very simple) functions by defining the derivative as the limit of the ratio of the increment to the increment of the argument, a table of derivatives and precisely defined rules of differentiation appeared. The first to work in the field of finding derivatives were Isaac Newton (1643-1727) and Gottfried Wilhelm Leibniz (1646-1716).

Therefore, in our time, to find the derivative of any function, you do not need to calculate the above-mentioned limit of the ratio of the increment of the function to the increment of the argument, but you only need to use the table of derivatives and the rules of differentiation. The following algorithm is suitable for finding the derivative.

To find the derivative, you need an expression under the prime sign break down simple functions into components and determine what actions (product, sum, quotient) these functions are related. Next, we find the derivatives of elementary functions in the table of derivatives, and the formulas for the derivatives of the product, sum and quotient - in the rules of differentiation. The derivative table and differentiation rules are given after the first two examples.

Example 1. Find the derivative of a function

Solution. From the rules of differentiation we find out that the derivative of a sum of functions is the sum of derivatives of functions, i.e.

From the table of derivatives we find out that the derivative of “X” is equal to one, and the derivative of sine is equal to cosine. We substitute these values ​​into the sum of derivatives and find the derivative required by the condition of the problem:

Example 2. Find the derivative of a function

Solution. We differentiate as a derivative of a sum in which the second term has a constant factor; it can be taken out of the derivative sign:

If questions still arise about where something comes from, they are usually cleared up after familiarization with the table of derivatives and the simplest rules of differentiation. We are moving on to them right now.

Table of derivatives of simple functions

1. Derivative of a constant (number). Any number (1, 2, 5, 200...) that is in the function expression. Always equal to zero. This is very important to remember, as it is required very often
2. Derivative of the independent variable. Most often "X". Always equal to one. This is also important to remember for a long time
3. Derivative of degree. When solving problems, you need to convert non-square roots into powers.
4. Derivative of a variable to the power -1
5. Derivative square root
6. Derivative of sine
7. Derivative of cosine
8. Derivative of tangent
9. Derivative of cotangent
10. Derivative of arcsine
11. Derivative of arccosine
12. Derivative of arctangent
13. Derivative of arc cotangent
14. Derivative of the natural logarithm
15. Derivative of a logarithmic function
16. Derivative of the exponent
17. Derivative exponential function

Rules of differentiation

1. Derivative of a sum or difference
2. Derivative of the product
2a. Derivative of an expression multiplied by a constant factor
3. Derivative of the quotient
4. Derivative of a complex function

Rule 1.If the functions

are differentiable at some point, then the functions are differentiable at the same point

and

those. the derivative of an algebraic sum of functions is equal to the algebraic sum of the derivatives of these functions.

Consequence. If two differentiable functions differ by a constant term, then their derivatives are equal, i.e.

Rule 2.If the functions

are differentiable at some point, then their product is differentiable at the same point

and

those. The derivative of the product of two functions is equal to the sum of the products of each of these functions and the derivative of the other.

Corollary 1. The constant factor can be taken out of the sign of the derivative:

Corollary 2. The derivative of the product of several differentiable functions is equal to the sum of the products of the derivative of each factor and all the others.

For example, for three multipliers:

Rule 3.If the functions

differentiable at some point And , then at this point their quotient is also differentiableu/v , and

those. the derivative of the quotient of two functions is equal to a fraction, the numerator of which is the difference between the products of the denominator and the derivative of the numerator and the numerator and the derivative of the denominator, and the denominator is the square of the former numerator.

Where to look for things on other pages

When finding the derivative of a product and a quotient in real problems, it is always necessary to apply several differentiation rules at once, so there are more examples on these derivatives in the article"Derivative of the product and quotient of functions".

Comment. You should not confuse a constant (that is, a number) as a term in a sum and as a constant factor! In the case of a term, its derivative is equal to zero, and in the case of a constant factor, it is taken out of the sign of the derivatives. This typical mistake, which occurs on initial stage studying derivatives, but as they solve several one- and two-part examples, the average student no longer makes this mistake.

And if, when differentiating a product or quotient, you have a term u"v, in which u- a number, for example, 2 or 5, that is, a constant, then the derivative of this number will be equal to zero and, therefore, the entire term will be equal to zero (this case is discussed in example 10).

Another common mistake is mechanically solving the derivative of a complex function as the derivative of a simple function. That's why derivative of a complex function a separate article is devoted. But first we will learn to find derivatives simple functions.

Along the way, you can’t do without transforming expressions. To do this, you may need to open the manual in new windows. Actions with powers and roots And Operations with fractions .

If you are looking for solutions to derivatives of fractions with powers and roots, that is, when the function looks like , then follow the lesson “Derivative of sums of fractions with powers and roots.”

If you have a task like , then you will take the lesson “Derivatives of simple trigonometric functions”.

Step-by-step examples - how to find the derivative

Example 3. Find the derivative of a function

Solution. We define the parts of the function expression: the entire expression represents a product, and its factors are sums, in the second of which one of the terms contains a constant factor. We apply the product differentiation rule: the derivative of the product of two functions is equal to the sum of the products of each of these functions by the derivative of the other:

Next, we apply the rule of sum differentiation: the derivative of an algebraic sum of functions is equal to the algebraic sum of the derivatives of these functions. In our case, in each sum the second term has a minus sign. In each sum we see both an independent variable, the derivative of which is equal to one, and a constant (number), the derivative of which is equal to zero. So, “X” turns into one, and minus 5 turns into zero. In the second expression, "x" is multiplied by 2, so we multiply two by the same unit as the derivative of "x". We obtain the following derivative values:

We substitute the found derivatives into the sum of products and obtain the derivative of the entire function required by the condition of the problem:

And you can check the solution to the derivative problem on.

Example 4. Find the derivative of a function

Solution. We are required to find the derivative of the quotient. We apply the formula for differentiating the quotient: the derivative of the quotient of two functions is equal to a fraction, the numerator of which is the difference between the products of the denominator and the derivative of the numerator and the numerator and the derivative of the denominator, and the denominator is the square of the former numerator. We get:

We have already found the derivative of the factors in the numerator in example 2. Let us also not forget that the product, which is the second factor in the numerator in the current example, is taken with a minus sign:

If you are looking for solutions to problems in which you need to find the derivative of a function, where there is a continuous pile of roots and powers, such as, for example, , then welcome to class "Derivative of sums of fractions with powers and roots" .

If you need to learn more about the derivatives of sines, cosines, tangents and others trigonometric functions, that is, when the function looks like , then a lesson for you "Derivatives of simple trigonometric functions" .

Example 5. Find the derivative of a function

Solution. In this function we see a product, one of the factors of which is the square root of the independent variable, the derivative of which we familiarized ourselves with in the table of derivatives. Using the rule for differentiating the product and the tabular value of the derivative of the square root, we obtain:

You can check the solution to the derivative problem at online derivatives calculator .

Example 6. Find the derivative of a function

Solution. In this function we see a quotient whose dividend is the square root of the independent variable. Using the rule of differentiation of quotients, which we repeated and applied in example 4, and the tabulated value of the derivative of the square root, we obtain:

To get rid of a fraction in the numerator, multiply the numerator and denominator by .

If you follow the definition, then the derivative of a function at a point is the limit of the ratio of the increment of the function Δ y to the argument increment Δ x:

Everything seems to be clear. But try using this formula to calculate, say, the derivative of the function f(x) = x 2 + (2x+ 3) · e x sin x. If you do everything by definition, then after a couple of pages of calculations you will simply fall asleep. Therefore, there are simpler and more effective ways.

To begin with, we note that from the entire variety of functions we can distinguish the so-called elementary functions. It's relative simple expressions, the derivatives of which have long been calculated and listed in the table. Such functions are quite easy to remember - along with their derivatives.

Derivatives of elementary functions

Elementary functions are all those listed below. The derivatives of these functions must be known by heart. Moreover, it is not at all difficult to memorize them - that’s why they are elementary.

So, derivatives of elementary functions:

Name Function Derivative
Constant f(x) = C, CR 0 (yes, zero!)
Power with rational exponent f(x) = x n n · x n − 1
Sinus f(x) = sin x cos x
Cosine f(x) = cos x −sin x(minus sine)
Tangent f(x) = tg x 1/cos 2 x
Cotangent f(x) = ctg x − 1/sin 2 x
Natural logarithm f(x) = log x 1/x
Arbitrary logarithm f(x) = log a x 1/(x ln a)
Exponential function f(x) = e x e x(nothing changed)

If an elementary function is multiplied by an arbitrary constant, then the derivative of the new function is also easily calculated:

(C · f)’ = C · f ’.

In general, constants can be taken out of the sign of the derivative. For example:

(2x 3)’ = 2 · ( x 3)’ = 2 3 x 2 = 6x 2 .

Obviously, elementary functions can be added to each other, multiplied, divided - and much more. This way new functions will appear, no longer particularly elementary, but also differentiable with respect to certain rules. These rules are discussed below.

Derivative of sum and difference

Let the functions be given f(x) And g(x), the derivatives of which are known to us. For example, you can take the elementary functions discussed above. Then you can find the derivative of the sum and difference of these functions:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

So, the derivative of the sum (difference) of two functions is equal to the sum (difference) of the derivatives. There may be more terms. For example, ( f + g + h)’ = f ’ + g ’ + h ’.

Strictly speaking, there is no concept of “subtraction” in algebra. There is a concept of “negative element”. Therefore the difference fg can be rewritten as a sum f+ (−1) g, and then only one formula remains - the derivative of the sum.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Function f(x) is the sum of two elementary functions, therefore:

f ’(x) = (x 2 + sin x)’ = (x 2)’ + (sin x)’ = 2x+ cos x;

We reason similarly for the function g(x). Only there are already three terms (from the point of view of algebra):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Answer:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Derivative of the product

Mathematics is a logical science, so many people believe that if the derivative of a sum is equal to the sum of derivatives, then the derivative of the product strike">equal to the product of derivatives. But screw you! The derivative of a product is calculated using a completely different formula. Namely:

(f · g) ’ = f ’ · g + f · g

The formula is simple, but it is often forgotten. And not only schoolchildren, but also students. The result is incorrectly solved problems.

Task. Find derivatives of functions: f(x) = x 3 cos x; g(x) = (x 2 + 7x− 7) · e x .

Function f(x) is the product of two elementary functions, so everything is simple:

f ’(x) = (x 3 cos x)’ = (x 3)’ cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (− sin x) = x 2 (3cos xx sin x)

Function g(x) the first multiplier is a little more complicated, but the general scheme does not change. Obviously, the first factor of the function g(x) is a polynomial and its derivative is the derivative of the sum. We have:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)’ · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Answer:
f ’(x) = x 2 (3cos xx sin x);
g ’(x) = x(x+ 9) · e x .

Please note that in the last step the derivative is factorized. Formally, this does not need to be done, but most derivatives are not calculated on their own, but to examine the function. This means that further the derivative will be equated to zero, its signs will be determined, and so on. For such a case, it is better to have an expression factorized.

If there are two functions f(x) And g(x), and g(x) ≠ 0 on the set we are interested in, we can define new feature h(x) = f(x)/g(x). For such a function you can also find the derivative:

Not weak, huh? Where did the minus come from? Why g 2? And like this! This is one of the most complex formulas - you can’t figure it out without a bottle. Therefore, it is better to study it at specific examples.

Task. Find derivatives of functions:

The numerator and denominator of each fraction contain elementary functions, so all we need is the formula for the derivative of the quotient:


According to tradition, let's factorize the numerator - this will greatly simplify the answer:

A complex function is not necessarily a half-kilometer-long formula. For example, it is enough to take the function f(x) = sin x and replace the variable x, say, on x 2 + ln x. It will work out f(x) = sin ( x 2 + ln x) - That's what it is complex function. It also has a derivative, but it will not be possible to find it using the rules discussed above.

What should I do? In such cases, replacing a variable and formula for the derivative of a complex function helps:

f ’(x) = f ’(t) · t', If x is replaced by t(x).

As a rule, the situation with understanding this formula is even more sad than with the derivative of the quotient. Therefore, it is also better to explain it using specific examples, with a detailed description of each step.

Task. Find derivatives of functions: f(x) = e 2x + 3 ; g(x) = sin ( x 2 + ln x)

Note that if in the function f(x) instead of expression 2 x+ 3 will be easy x, then we get an elementary function f(x) = e x. Therefore, we make a replacement: let 2 x + 3 = t, f(x) = f(t) = e t. We look for the derivative of a complex function using the formula:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

And now - attention! We perform the reverse replacement: t = 2x+ 3. We get:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Now let's look at the function g(x). Obviously it needs to be replaced x 2 + ln x = t. We have:

g ’(x) = g ’(t) · t’ = (sin t)’ · t’ = cos t · t

Reverse replacement: t = x 2 + ln x. Then:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

That's all! As can be seen from the last expression, the whole problem has been reduced to calculating the derivative sum.

Answer:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Very often in my lessons, instead of the term “derivative,” I use the word “prime.” For example, the stroke of the sum is equal to the sum of the strokes. Is that clearer? Well, that's good.

Thus, calculating the derivative comes down to getting rid of these same strokes according to the rules discussed above. As a final example, let's return to the derivative power with a rational exponent:

(x n)’ = n · x n − 1

Few people know that in the role n may well be a fractional number. For example, the root is x 0.5. What if there is something fancy under the root? Again, the result will be a complex function - they like to give such constructions to tests and exams.

Task. Find the derivative of the function:

First, let's rewrite the root as a power with a rational exponent:

f(x) = (x 2 + 8x − 7) 0,5 .

Now we make a replacement: let x 2 + 8x − 7 = t. We find the derivative using the formula:

f ’(x) = f ’(t) · t ’ = (t 0.5)’ · t’ = 0.5 · t−0.5 · t ’.

Let's do the reverse replacement: t = x 2 + 8x− 7. We have:

f ’(x) = 0.5 · ( x 2 + 8x− 7) −0.5 · ( x 2 + 8x− 7)’ = 0.5 (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Finally, back to the roots:

The problem of finding the derivative of a given function is one of the main ones in a mathematics course high school and in higher educational institutions. It is impossible to fully explore a function and construct its graph without taking its derivative. The derivative of a function can be easily found if you know the basic rules of differentiation, as well as the table of derivatives of basic functions. Let's figure out how to find the derivative of a function.

The derivative of a function is the limit of the ratio of the increment of the function to the increment of the argument when the increment of the argument tends to zero.

Understanding this definition is quite difficult, since the concept of a limit is not fully studied in school. But in order to find derivatives of various functions, it is not necessary to understand the definition; let’s leave it to mathematicians and move straight to finding the derivative.

The process of finding the derivative is called differentiation. When we differentiate a function, we will obtain a new function.

To denote them we will use letters f, g, etc.

There are many different notations for derivatives. We will use a stroke. For example, writing g" means that we will find the derivative of the function g.

Derivatives table

In order to answer the question of how to find the derivative, it is necessary to provide a table of derivatives of the main functions. To calculate derivatives of elementary functions it is not necessary to perform complex calculations. It is enough just to look at its value in the table of derivatives.

  1. (sin x)"=cos x
  2. (cos x)"= –sin x
  3. (x n)"=n x n-1
  4. (e x)"=e x
  5. (ln x)"=1/x
  6. (a x)"=a x ln a
  7. (log a x)"=1/x ln a
  8. (tg x)"=1/cos 2 x
  9. (ctg x)"= – 1/sin 2 x
  10. (arcsin x)"= 1/√(1-x 2)
  11. (arccos x)"= - 1/√(1-x 2)
  12. (arctg x)"= 1/(1+x 2)
  13. (arcctg x)"= - 1/(1+x 2)

Example 1. Find the derivative of the function y=500.

We see that this is a constant. From the table of derivatives it is known that the derivative of a constant is equal to zero (formula 1).

Example 2. Find the derivative of the function y=x 100.

This power function whose exponent is 100 and to find its derivative you need to multiply the function by the exponent and reduce it by 1 (formula 3).

(x 100)"=100 x 99

Example 3. Find the derivative of the function y=5 x

This is an exponential function, let's calculate its derivative using formula 4.

Example 4. Find the derivative of the function y= log 4 x

We find the derivative of the logarithm using formula 7.

(log 4 x)"=1/x ln 4

Rules of differentiation

Let's now figure out how to find the derivative of a function if it is not in the table. Most of the functions studied are not elementary, but are combinations of elementary functions using simple operations (addition, subtraction, multiplication, division, and multiplication by a number). To find their derivatives, you need to know the rules of differentiation. Below, the letters f and g denote functions, and C is a constant.

1. The constant coefficient can be taken out of the sign of the derivative

Example 5. Find the derivative of the function y= 6*x 8

We take out a constant factor of 6 and differentiate only x 4. This is a power function, the derivative of which is found using formula 3 of the table of derivatives.

(6*x 8)" = 6*(x 8)"=6*8*x 7 =48* x 7

2. The derivative of a sum is equal to the sum of the derivatives

(f + g)"=f" + g"

Example 6. Find the derivative of the function y= x 100 +sin x

A function is the sum of two functions, the derivatives of which we can find from the table. Since (x 100)"=100 x 99 and (sin x)"=cos x. The derivative of the sum will be equal to the sum of these derivatives:

(x 100 +sin x)"= 100 x 99 +cos x

3. The derivative of the difference is equal to the difference of the derivatives

(f – g)"=f" – g"

Example 7. Find the derivative of the function y= x 100 – cos x

This function is the difference of two functions, the derivatives of which we can also find in the table. Then the derivative of the difference is equal to the difference of the derivatives and don’t forget to change the sign, since (cos x)"= – sin x.

(x 100 – cos x)"= 100 x 99 + sin x

Example 8. Find the derivative of the function y=e x +tg x– x 2.

This function has both a sum and a difference; let’s find the derivatives of each term:

(e x)"=e x, (tg x)"=1/cos 2 x, (x 2)"=2 x. Then the derivative of the original function is equal to:

(e x +tg x– x 2)"= e x +1/cos 2 x –2 x

4. Derivative of the product

(f * g)"=f" * g + f * g"

Example 9. Find the derivative of the function y= cos x *e x

To do this, we first find the derivative of each factor (cos x)"=–sin x and (e x)"=e x. Now let's substitute everything into the product formula. We multiply the derivative of the first function by the second and add the product of the first function by the derivative of the second.

(cos x* e x)"= e x cos x – e x *sin x

5. Derivative of the quotient

(f / g)"= f" * g – f * g"/ g 2

Example 10. Find the derivative of the function y= x 50 /sin x

To find the derivative of a quotient, we first find the derivative of the numerator and denominator separately: (x 50)"=50 x 49 and (sin x)"= cos x. Substituting the derivative of the quotient into the formula, we get:

(x 50 /sin x)"= 50x 49 *sin x – x 50 *cos x/sin 2 x

Derivative of a complex function

A complex function is a function represented by a composition of several functions. There is also a rule for finding the derivative of a complex function:

(u (v))"=u"(v)*v"

Let's figure out how to find the derivative of such a function. Let y= u(v(x)) be a complex function. Let's call the function u external, and v - internal.

For example:

y=sin (x 3) is a complex function.

Then y=sin(t) is an external function

t=x 3 - internal.

Let's try to calculate the derivative of this function. According to the formula, you need to multiply the derivatives of the internal and external functions.

(sin t)"=cos (t) - derivative of the external function (where t=x 3)

(x 3)"=3x 2 - derivative of the internal function

Then (sin (x 3))"= cos (x 3)* 3x 2 is the derivative of a complex function.

Similar articles