Области применения математических методов в медицине и биологии. Исследовательская работа. Методы математического анализа в медицине История применения математических методов в медицине

МАТЕМАТИЧЕСКИЕ МЕТОДЫ в медицине - совокупность математических подходов, используемых для получения количественных зависимостей, построения моделей закономерностей каких-либо процессов или явлений, происходящих в живых организмах, а также относящихся к организации службы здравоохранения и охраны здоровья.

Несмотря на то что М. м. применяются практически во всех областях человеческого знания, роль и значение М. м. в отдельных конкретных областях науки различны. Так, если сравнительно простые формы изучаемых явлений описываются с достаточной полнотой (напр., в технике), то при их исследовании возникают проблемы, относящиеся к области собственно математических методов,- такие, как разработка специфических систем символической записи, алгоритмов решения задач, способов количественного анализа характеристик изучаемых явлений и т. д. В тех же случаях, когда приходится иметь дело с большими и сложно организованными объектами, как это имеет место в медицине и биологии, основная трудность исследования заключается уже не столько в развитии математических теорий и аппарата исследования, сколько в выборе специфических предпосылок и исходных положений для последующей математической обработки, а также в толковании результатов, получаемых с помощью М. м.

Во всех случаях использование М. м. подчинено решению задач конкретных областей деятельности человека, что значительно обогащает теорию и практику в этих областях. Очевидно, что разумное использование М. м. в медицине, а также в смежных областях (биохимия, физиология и т. д.) дает реальную возможность поднять исследования в этих областях на уровень, соответствующий их значению в жизни современного общества.

При внедрении количественных методов исследования в области медицины и биологии необходимо получение достаточно полных и обоснованных описаний процессов и явлений, даваемых на языке и в терминах, отвечающих специфике конкретных решаемых задач. Сложность здесь заключается прежде всего в выявлении и оценке множественных взаимозависимостей, т. к. анализ многомерных представлений на уровне их интуитивного понимания чрезвычайно затруднен, а в ряде случаев практически невозможен. Именно с такими сложными задачами сталкивается современная мед. наука при анализе физиол, процессов в организме, при решении задач диагностики и лечения заболеваний. При решении некоторых частных задач с успехом применяются различные графические описания (графики, диаграммы, номограммы и др.). Так, описание крови как физ.-хим. системы удобнее проводить с помощью номограмм - многомерных графиков с 8-10 координатами. Если, напр., на таком графике провести прямую через две точки, соответствующие одновременно измеряемым величинам pO2 и pCO2, то на ней окажутся все величины, функционально связанные с этими значениями (pH сыворотки крови, процент гемоглобина, pH клеточной фракции и т. д.),

В тех случаях, когда удается получить достаточные количественные данные, используют более точные способы математического описания функц, зависимостей, т. е. строят уравнения, связывающие между собой отдельные измеряемые (а в ряде случаев и неизмеряемые) переменные в организме. Примером могут служить вычисления ударного и минутного объема сердца по измеряемым данным частоты сердечных сокращений и формы кривой АД. Построение таких зависимостей в условиях эксперимента производят на основе статистических методов, напр, метода наименьших квадратов (см. Наименьших квадратов метод).

Широкое распространение для описания переменных и процессов, изменяющихся во времени, получили дифференциальные уравнения, так что одно или несколько таких уравнений выражают соотношения между изменениями основных переменных. Примером описания течения процессов в сердечно-сосудистой системе может служить так наз. модель эластичного резервуара - линейное дифференциальное уравнение типа:

(1/k)*(dP/dT) = P/R + W(t),

где переменная P - мгновенное значение АД; параметры R и k - соответственно общее сопротивление кровеносного русла току крови и коэффициент упругости аорты; W(t) - мгновенная объемная скорость выброса крови из сердца. Когда исследуемая ситуация описывается системой трех-четырех и более дифференциальных уравнений, для их решения необходимо использование ЭВМ (см. Электронная вычислительная машина).

Высшей ступенью применения М. м. в биологии и медицине является анализ систем (см. Системный анализ) и их математическое моделирование (см.). В этом случае при решении практических мед. и биол, задач возникает возможность оценки текущего состояния организма или других анализируемых систем, прогнозирования тенденции изменения и предсказания результатов различного рода корригирующих воздействий. Необходимая для этого информация о большом числе компонент системы и их взаимоотношениях представляется обычно в виде уравнений. Кроме того, требуется разработка некоторых общих концептуальных идей или структурных представлений, играющих роль каркаса, к к-рому могут быть привязаны многочисленные специфические характеристики и количественные описания анализируемых процессов и явлений.

На этом самом сложном этапе внедрения М. м. в медицину и биологию главное значение приобретают методы теории управления (см. Кибернетика , Кибернетика медицинская), теории массового обслуживания (см. Массового обслуживания теория), теории игр (см. Моделирование), теории решений, а также методы теории информации (см. Информации теория). Непосредственное внедрение этих методов в клин, медицину и практику мед.-биол, исследований происходит в рамках мед. кибернетики, основными направлениями развития к-рой являются: разработка автоматизированных систем сбора, обработки и хранения мед. информации (в т. ч. разработка методов создания автоматизированных мед. служб и архивов, банков данных, методов анализа результатов обследования больного и др.); создание диагностических систем для разных видов заболеваний с применением ЭВМ (см. Диагностика машинная); разработка и использование методов математического моделирования и системного анализа различных систем организма в норме и в условиях патологии - в т. ч. задачи управления лечением. К последнему направлению примыкают работы по моделированию различных эпидемиол, процессов и исследования в области математического моделирования и анализа систем организации здравоохранения.

Исходным материалом для М. м. в медицине и биологии являются, как правило, суждения экспертов в данной области, количественные данные, получаемые при измерении морфол., физиол, и биохим, переменных в организме. Совокупность методов и приемов обработки данных в биологии и медицине иногда рассматривают как специфическую область количественных методов сбора и обработки информации - биометрию (см.).

Для строгого и адекватного описания биол, и мед. объектов, характеризующихся значительными случайными колебаниями, используются вероятностные подходы, а для раскрытия смысла этих явлений - методы теории вероятностей (см. Вероятностей теория , Корреляционный анализ). Для описания реальных явлений с помощью теории вероятностей пользуются термином вероятностная (статистическая) модель. Важным разделом теории вероятностей является математическая статистика, цель к-рой заключается в изучении соответствия между теоретической моделью и реальной действительностью и проверке адекватности вероятностной модели.

На этапе получения исходной информации о биол, и мед. явлениях важна правильная постановка экспериментов с тем, чтобы они приводили к существенным выводам, к экономии времени, рабочей силы и материалов, могли бы быть легко и однозначно интерпретированы, давали бы ясные результаты. Раздел статистики, изучающий способы организации и проведения наблюдений в эксперименте, называется планированием экспериментов (см. Эксперимент).

При решении задач планирования экспериментов широко используют методы факторного анализа (см.), целью к-рого является определение того вклада, который вносит в общую изменчивость результатов эксперимента каждый из факторов, влияющих на его исход.

Методы теории вероятностей и математической статистики получили широкое распространение в практике медико-экспериментальных и клин, исследований, напр, при обработке лаб. и клин, данных (в т. ч. при анализе ЭКГ и ЭЭГ, получении распределений микрообъектов по оптикогеометрическим параметрам в гистол, препаратах и т. д.), в ходе эпидемиол. исследований, в санитарной статистике (см.), аптечной сети и т. д.

Использование количественных методов при математическом моделировании требует точной формулировки задачи, исходных допущений и гипотез, а также подразумевает систематизацию последовательных шагов, ведущих к искомым выводам и результатам. Кроме того, сама задача исследования при подготовке к моделированию должна логически вытекать из современного состояния исследуемой области и учитывать ограничения, налагаемые возможностями и доступностью методов измерения, обработки полученных данных и последующего анализа.

Процесс математического моделирования включает следующие основные этапы: выбор структуры модели и формулировка законов, связывающих ее элементы; анализ полученного описания (верификация), т. е. проверка близости процессов, получаемых на модели, и реальных процессов и определение области адекватности полученной модели; получение новых данных и модернизация модели. Особое значение при моделировании процессов в организме человека приобрели понятия и методы кибернетики и теории управления, такие как обратная связь (см.), устойчивость, надежность (см.), чувствительность (см.) и т. д. Эти понятия чрезвычайно важны для формального описания физиол, и мед. концепций (гомеостаза организма, адаптации и компенсации, стресса) и количественного анализа процессов заболевания и лечения.

Работы по М. м. решения физиологических медико-биологических и медико-экспериментальных задач переживают период бурного развития. Так, в Ин-те кибернетики АН УССР разработана одна из наиболее крупных моделей комплекса физиол, систем организма, позволяющая одновременно изучать процессы дыхания (см.), кровообращения (см.), водно-солевого обмена (см.) и терморегуляцию (см.). В Ин-те сердечно-сосудистой хирургии им. А. Н. Бакулева модели сердечно-сосудистой системы успешно применяются в клин, практике. В Ин-те проблем управления совместно с Ин-том трансплантологии и искусственных органов М3 СССР разработаны методы математического моделирования искусственных внутренних органов в их взаимодействии с различными физиол, системами организма. Успешно развивается работа по математическому моделированию системы охраны здоровья населения в масштабах страны. В Москве, Минске, Воронеже и других городах страны развертывается работа по анализу процессов управления лечением. Перспективной областью применения М. м. является исследование процессов фармакокинетики (см.) и фармакодинамики (см.), а также моделирование и анализ различных типов патол, и защитных процессов в организме человека (моделирование сахарного диабета, ранних стадий гипертонической болезни, иммунных реакций, процесса клеточного роста злокачественных клеток и др.).

В медицину проникновение М. м. происходит гл. обр. через статистику, биол, и мед. кибернетику (см. Кибернетика медицинская). При этом методы, используемые в биол, и мед. кибернетике, во многом совпадают, а сами эти дисциплины неразрывно связаны между собой.

В целом адекватное использование М. м. является перспективным методом анализа мед. и биол, явлений; их использование в медицине способствует прогрессу в медико-экспериментальной и клин, областях и помогает врачу, увеличивая его творческие возможности.

Библиография: Адлер Ю. П., Маркова Е. В. и Грановский Ю. В. Планирование эксперимента при поиске оптимальных условий, М., 1971; Бейли Н. Математика в биологии и медицине, пер. с англ., М., 1970, библиогр.; Быховский М. Л. и Вишневский А. А. Кибернетические системы в медицине, М., 1971, библиогр.; Ластед Л. Б. Введение в проблему принятия решений в медицине, пер. с англ., М., 1971, библиогр.; Лисенков А. Н. Математические методы планирования многофакторных медико-биологических экспериментов, М., 1979, библиогр.; Моделирование физиологических систем организма, под ред. Б. В. Петровского, М., 1971, библиогр.; Новосельцев В. Н. Теория управления и биосистемы, М., 1978, библиогр.; Петровский А. М. Системный анализ некоторых медико-биологических проблем, связанных с управлением лечением, Автоматика и телемеханика, № 2, с. 54, 1974; Сидоренко Г. И. Кибернетика и терапия, М., 1970; Статистические методы исследования в медицине и здравоохранении, под ред. Л. Е. Полякова, Л., 1971; Теоретические исследования физиологических систем, под ред. H. М. Амосова, Киев, 1977, библиогр.

В. Н. Новосельцев.

Свердловский областной медицинский колледж.

Тема реферата:

«Роль математики в медицине»

Выполнил студент: Постников Владислав.

Группа: 293 МС.

Преподаватель: Казакова Т.С.

Екатеринбург.

2012 – 2013 г.

1. Введение.

2. Математические методы.

3. Статистическая совокупность.

4. Дискретная случайная величина и законы ее распределения.

5. Статистическое оценивание.

6. Проверка статистических гипотез.

7. Регрессионный анализ.

8. Кластерный анализ.

9. Факторный анализ.

10. Математическое моделирование систем.

11. Компартментальное моделирование.

12. Метод черного ящика.

13. Заключение.

1.Введение.

называется законом распределения .

Для наглядности закон распределения дискретной случайной величины изображают графически, для чего в прямоугольной системе координат строят точки и соединяют последовательно отрезками прямых. Получающаяся при этом ломаная линия называется многоугольником распределения случайной величины .

Если возможными значениями дискретной случайной величины являются 0, 1, 2, …, n , а соответствующие им вероятности вычисляются по формуле Бернулли :

то говорят, что случайная величина имеет биномиальный закон распределения :

Пусть заданы натуральные числа m, n, s, причем Если возможными значениямидискретной случайной величины являются 0,1,2,…, m , а соответствующие имвероятности выражаются по формуле

то говорят, что случайная величина имеет гипергеометрический закон распределения .

Другими часто встречающимися примерами законов распределения дискретной случайной величины являются:

Закон распределения Пуассона :

5. Статистическое оценивание .

Применяют в медицинских исследованиях, когда получаемых данных недостаточно для установления вида функции распределения случайных величин. В этом случае предполагают, что реализуется один из законов распределения, а матрицу наблюдений используют для оценки параметров этого закона.

Статистические оценки могут быть точечными или интервальными. В первом случае оценка дается в виде чисел (как правило, это среднее значение и дисперсия). Во втором случае определяется интервал, в котором исследуемая случайная величина находится с заданной вероятностью. Получаемые оценки должны относиться к генеральной совокупности. Интервальная оценка генерального среднего (математического ожидания) производится на основе распределения Стьюдента (при числе наблюдений не более 50-60) или на основе гипотезы о нормальном распределении (при большем числе наблюдений). Для оценки генеральной дисперсии применяется распределениеc 2 . Интервал, в котором с заданной вероятностью находится генеральный параметр, называется доверительным интервалом, сама такая вероятность - доверительной вероятностью. В медицинских исследованиях используют три порога доверительной вероятности b: 0,95; 0,99; 0,999. Чем точнее требуется результат, тем большим порогом задается исследователь и тем шире (при прочих равных условиях) получается доверительный интервал. В статистике наряду с понятием доверительной вероятности употребляется термин «уровень значимости». Соответственно применяются три уровня значимости 0,05; 0,01 и 0,001.

6. Проверка статистических гипотез.

Используется чаще всего для определения принадлежности двух имеющихся выборок к одной и той же генеральной совокупности. Подобные задачи возникают, например, при анализе заболеваемости, эффективности лекарственных препаратов и т.п.

Гипотеза о том, что обе выборки не различаются, т.е. принадлежат к одной генеральной совокупности, называется иногда нуль-гипотезой. Эта гипотеза принимается, если ее значимость, получаемая на основании статистических критериев, превышает допустимый порог (р > 0,95). Однако при р < 0,95 отвергнуть эту гипотезу нельзя: ответ остается неопределенным, и для получения окончательного вывода требуются дополнительные данные. Гипотеза отвергается в том случае, если ее значимость (вероятность правильности) становится меньше заданного стандартного порога.

При проверке статистических гипотез используются параметрические и непараметрические критерии. В первом случае производится сравнение параметров двух выборочных распределений (средних и дисперсий) и делается заключение о равенстве или различии этих параметров в генеральных совокупностях. Гипотеза о равенстве средних значений проверяется по критерию Стьюдента, равенство дисперсий - по критерию Фишера. Описание соответствующих процедур можно найти в любом пособии по математической статистике.

В последние годы большую популярность приобрели непараметрические критерии (Уилкоксона, Колмогорова - Смирнова и др.). Их достоинством является то, что они не содержат ограничений, вытекающих из гипотез о типе распределения случайных величин, а опираются на единый принцип - непрерывности распределений.

Эти критерии применимы и для анализа порядковых данных. Однако по сравнению с параметрическими методами они менее чувствительны к различиям в выборках. Чаще всего непараметрические критерии используются для сравнения эмпирического распределения с теоретическим, в частности при проверке имеющейся статистической совокупности на принадлежность к типу нормальных распределений.

7. Регрессионный анализ .

Регрессией называется зависимость среднего значения одной случайной величины от некоторой другой (или от нескольких случайных величин), а регрессионным анализом - раздел математической статистики, объединяющий прикладные методы исследования регрессионных зависимостей. Регрессионный анализ приобрел большую популярность в связи с распространением ЭВМ.

Если xi и yi - наблюдаемые случайные величины, ei - случайная ошибка с нулевым математическим ожиданием, то регрессия записывается в виде:

yi = f (x i ) + ei , i = 1, 2,…, N ,

где f - функция регрессии.

Если xi - скалярная величина (число), то регрессия называется парной (связывающей пару случайных величин), если xi - вектор, то множественной.

Задачей регрессионного анализа является нахождение «наилучшей» функции f , описывающей зависимость у от х . Оценка производится либо по методу наименьших квадратов, либо по методу максимума правдоподобия (что возможно только при известном распределении величин у ).

При использовании регрессионного анализа важно правильно выбрать вид и степень сложности регрессионной модели. Классический путь состоит в учете биологических, физических и других предпосылок, а качество полученной модели оценивается по величине остаточных отклонений. Возможен способ проверки гипотезы линейности по остаточным отклонениям - вычисляется показатель нелинейности и производится проверка достоверности его отличия от нуля по критерию Фишера. Другой подход предложен в 1970-х гг. В.Н. Вапником: при малых выборках сложность регрессионной модели должна быть тем меньше, чем меньше объем выборки, имеющейся в распоряжении исследователя. Разработаны критерии оптимальной сложности регрессии в зависимости от дисперсии остаточных отклонений и объема выборки.

8. Кластерный анализ.

Группа методов статистической обработки, которая включает методы классификации объектов, в т.ч. автоматические, на основе их сходства. Кластерный анализ, как и факторный, «сжимает» информацию. Но если факторный анализ снижает размерность пространства признаков, то кластерный уменьшает число рассматриваемых объектов. Совокупность объектов разбивается на кластеры - группы объектов, обладающие сходными свойствами, поэтому вместо всей группы можно рассматривать один объект, характеризующий ее. Так, ряд административных территорий может быть представлен в виде одного кластера, объединяющего регионы с одинаковой эпидемиологической обстановкой. Кластерный анализ включает методы, которые исходно не принимают во внимание вероятностную природу обрабатываемых данных. При постановке задач кластеризации число кластеров, на которое должно быть разбито исходное множество объектов, может задаваться заранее или выявляться в процессе решения.

Алгоритмы кластерного анализа направлены на получение наилучшего в определенном смысле качества разбиения совокупности объектов на группы.

9. Факторный анализ.

Совокупность методов исследования многомерных признаков за счет снижения их размерности (путем введения так называемых общих факторов, которые непосредственно наблюдаться не могут). В медицине методы факторного анализа применяются для решения двух взаимосвязанных задач: группировки исходной системы признаков на основе их корреляционных связей и сжатия информации за счет построения системы обобщенных индикаторов.

В факторной модели каждый исходный признак представляется в виде комбинации новых показателей (общих факторов), число которых, как правило, устанавливается меньше числа исходных. Такой метод описания удобен, например, для получения обобщенных индексов, характеризующих состояние системы здравоохранения различных регионов или однородных учреждений (исходные показатели - заболеваемость, смертность, количество профосмотров - заменяются набором обобщенных показателей, определяющих ресурсное обеспечение, качество врачебного обслуживания и т.п.).

Недостатком факторного анализа является трудность содержательной интерпретации общих факторов.

10. Математическое моделирование систем.

Является вторым кардинальным направлением применения М.м. в медицине. Основным понятием, используемым при таком анализе, является математическая модель системы.

Под математической моделью понимается описание какого-либо класса объектов или явлений, выполненное с помощью математической символики. Модель представляет собой компактную запись некоторых существенных сведений о моделируемом явлении, накопленных специалистами в конкретной области (физиологии, биологии, медицине). Иногда можно встретить и устаревшее значение термина «математическое моделирование» как процесса анализа модели на ЭВМ. Чтобы избежать путаницы, во втором случае используют понятие «вычислительный эксперимент».

В математическом моделировании выделяют несколько этапов. Основным является формулирование качественных и количественных закономерностей, описывающих основные черты явления. На этом этапе необходимо широкое привлечение знаний и фактов о структуре и характере функционирования рассматриваемой системы, ее свойствах и проявлениях. Этап завершается созданием качественной (описательной) модели объекта, явления или системы. Этот этап не является специфическим для математического моделирования. Словесное (вербальное) описание (часто с использованием цифрового материала) в ряде случаев является конечным результатом физиологических, психологических, медицинских исследований. Математической моделью описание объекта становится только после того, как оно на последующих этапах переводится на язык математических терминов.

11. Компартментальное моделирование .

Распространено в медицине и биологии. Согласно определению американского фармаколога и биохимика Шеппарда (С.W. Sheppard, 1948), компартмент - это некоторое количество вещества, выделяемое в биологической системе и обладающее свойством единства, поэтому в процессах транспорта и химических преобразований его можно рассматривать как целое. Например, в качестве особых компартментов рассматривают весь кислород в легких, всю углекислоту в венозной крови, количество введенного препарата в межклеточной жидкости, запас гликогена в печени и т.п. Модели, в которых исследуемая система представляется в виде совокупности компартментов, потоков вещества между ними, а также источников и стоков всех веществ, называются компартментальными.

В компартментальной модели каждому компартменту соответствует своя переменная состояния - количественная характеристика компартмента (концентрация, масса вещества, парциальное давление газа и т.п.). Вещество попадает в систему через источники - естественные (физиологические процессы внешнего дыхания, например источник кислорода) или искусственные (капельница или инъекции); удаляются через стоки - естественные (например, почка) или искусственные (например, аппаратура гемосорбции). Темпы (скорости) потоков вещества из одного компартмента в другой часто предполагаются пропорциональными концентрациям или количествам вещества в компартменте.

12. Метод черного ящика .

Первым примером упрощенного описания живых систем в медицине и биологии была модель черного ящика, когда все выводы делались только на основе изучения реакций объекта (выходов) на те или иные внешние воздействия (входы) без учета внутренней структуры объекта. Соответствующее описание объекта в понятиях вход - выход оказалось неудовлетворительным, т.к. оно не учитывало изменения его выходных реакций на одно и то же воздействие из-за влияния внутренних изменений в объекте. Поэтому метод черного ящика уступил место методам пространства состояний, в которых описание дается в понятиях вход - состояние - выход. Наиболее естественным описанием динамической системы в рамках теории пространства состояний является компартментальное моделирование, где каждому компартменту соответствует одна переменная состояния. В то же время соотношения вход - выход по-прежнему широко используются для описания существенных свойств биологических объектов.

Выбор тех или иных М.м. при описании и исследовании биологических и медицинских объектов зависит как от индивидуальных знаний специалиста, так и от особенностей решаемых задач. Например, статистические методы дают полное решение задачи во всех случаях, когда исследователя не интересует внутренняя сущность процессов, лежащих в основе изучаемых явлений. Когда знания о структуре системы, механизмах ее функционирования, протекающих в ней процессах и возникающих явлениях могут существенно повлиять на решения исследователя, прибегают к методам математического моделирования систем.

13. Заключение.

Математика имеет почти такое же значение для остальных наук, как и логика. Роль математики заключается в построении и анализе количественных математических моделей, а также в исследовании структур, подчинённых формальным законам. Обработка и анализ экспериментальных результатов, построение гипотез и применение научных теорий в практической деятельности требует использования математики. Математика всем нужна. Наборы чисел, как ноты, могут быть мертвыми значками, а могут звучать музыкой, симфоническим оркестром… И медикам тоже. Хотя бы для того, чтобы грамотно прочитать обычную кардиограмму. Без знания азов математики нельзя быть докой в компьютерной технике, использовать возможности компьютерной томографии… Ведь современная медицина не может обходиться без сложнейшей техники.

Когда-то математики пришли в медицину с наивным представлением, что они легко вникнут в наши симптомы и помогут улучшить диагностику. С появлением первых ЭВМ будущее представлялось просто замечательным: заложил в компьютер всю информацию о больном и получил такое, что врачу и не снилось. Казалось, что машина может все. Но поле математики в медицине предстало огромным и невероятно сложным, а ее участие в диагностике – вовсе не простым перебором и компоновкой многих сотен лабораторных и инструментальных показателей.

Скатушина Александра

Роль математического образования в профессиональной подготовке медицинских работников очень велика. Процессы, происходящие в настоящее время во всех сферах жизни общества, предъявляют новые требования к профессиональным качествам специалистов. Современный этап развития общества характеризуется качественным изменением деятельности медицинского персонала, которое связано с широким применением математического моделирования, статистики и других важных явлений, имеющих место в медицинской практике.

Скачать:

Предварительный просмотр:

МОУ Кесовогорская средняя общеобразовательная школа

Исследовательская работа на тему:

«Применение математических методов в медицине»

Выполнила: ученица 10 класса

Скатушина Александра

Проверила: учитель математики

Нилушкова Н.Ю.

п.г.т. Кесова Гора 2014г

Введение

Математические методы, используемые для постановки диагноза

Примеры применения

Практическое применение математических методов в Кесовогорской ЦРБ

Заключение

Используемая литература

Приложение

Введение

Роль математического образования в профессиональной подготовке медицинских работников очень велика. Процессы, происходящие в настоящее время во всех сферах жизни общества, предъявляют новые требования к профессиональным качествам специалистов. Современный этап развития общества характеризуется качественным изменением деятельности медицинского персонала, которое связано с широким применением математического моделирования, статистики и других важных явлений, имеющих место в медицинской практике. На первый взгляд медицина и математика могут показаться несовместимыми областями человеческой деятельности. Медицина же, долгое время развиваясь «параллельно» с математикой, оставалась практически неформализованной наукой тем самым подтверждая, что «медицина – это искусство». Основная проблема заключается в том, что нет общих критериев здоровья, а совокупность показателей для одного конкретного пациента может существенно отличаться от таких же показателей для другого. Часто медики сталкиваются с общими проблемами, сформулированными в медицинских терминах, с целью помочь больному, они не приносят готовых задач и уравнений, которые нужно решать. При правильном применении математический подход не отличается существенно от подхода, основанного просто на здравом смысле. Математические методы просто более точны, и в них используются более чёткие формулировки и более широкий набор понятий, но, в конечном счете, они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, идут дальше их. Этап постановки задачи бывает трудоёмким и занимает достаточно много времени, а зачастую продолжается практически до получения решения. Но именно разные взгляды на проблему математиков и медиков, являющихся, представителями двух отличных по своей методологии наук помогают получить результат.

Актуальность работы: применение математических методов в медицине являются одним из приложений методов искусственного интеллекта. Их разработка имеет цель помочь врачу избежать собственных ошибок. Задачей таких методов является определение заболеваний, которыми болен пациент, на основе данных о его наблюдениях и построении объяснения принятого решения.

Задачи работы : найти информацию о применении математических методов в медицине и выявить их необходимость, узнать используются ли математические методы в Кесовогорской ЦРБ.

Методы исследования : научный, анализ литературных источников.

Математические методы в медицине

Математические методы в медицине - совокупность методов количественного изучения и анализа состояния и поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью математических методов, входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей; заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне. Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете. В результате эти науки достигли высокой степени теоретических обобщений. В биологических науках математические методы пока еще играют подчиненную роль из-за сложности объектов, процессов и явлений, вариабельности их характеристики, наличия индивидуальных особенностей. В медицине и смежных с ней областях математические методы используются для установления степени достоверности и обобщения информации, получаемой в ходе клинических, медико-биологических, лабораторных исследований. Анализ данных осуществляется с применением подходов теории вероятности и математической статистики. Одним из важных достижений математических методов в медицине, основанных на математической статистике, является возможность формирования репрезентативных выборок. Путем ограничения числа объектов, подлежащих обследованиям, удается сэкономить значительные, получив интересующие характеристики явления на основе изучения ограниченного числа наблюдений. К данной группе математических методов тесно примыкает так называемое планирование эксперимента – подход, позволяющий достичь поставленных целей наиболее рациональным и экономным способом. При планировании эксперимента специалист указывает цель работы и характеристики объектов, подлежащие установлению, а математик-консультант определяет минимальное количество объектов, подлежащих исследованию для получения достоверных выводов, объемы измерений, частоту замеров и др. Математические методы планирования в медицине получают распространение и в связи с ростом технической оснащенности учреждений здравоохранения дорогостоящими высокопроизводительными автоматизированными и необходимостью их наиболее эффективного использования.

Особое направление применения математических методов

Особое направление применения математических методов – для обработки медико-биологической информации и принятия решений на ее основе. Цель математических методов данной группы – повысить надежность и объективность принимаемых специалистами решений. При этом математические методы могут имитировать ход анализа данных или процедуры принятия решений врача либо исследователя, использовать с той же целью чисто математические способы обработки и анализа данных. Подходы, относящиеся ко второй группе математических методов ориентированы на решение конкретных задач – выявление факторов риска, диагностику, выбор оптимальной лекарственной терапии и др. Если задачи диагностики или отнесения объекта исследования к определенному типу объектов решаются с применением ЭВМ, то говорят о машинной диагностике, автоматической классификации и др. Важное направление этой области математических методов связано с выбором наиболее удобного представления информации для специалиста. Хорошо известные методы систематизации и представления медико-биологических данных (таблицы, графики, номограммы, гистограммы) дополняются чрезвычайно наглядными формами визуального представления информации с помощью ЭВМ.
Третья группа математических методов включает самые разнообразные подходы, направленные на перспективу использования современных средств вычислительной техники и их уникальных возможностей для нужд практического здравоохранения. Они охватывают ряд биомедицинских задач, которые поддаются математическому описанию, направленные в виде уравнений, построенных на основе экспериментальных и клинических наблюдений и теоретических соображений. Совокупность уравнений, часто очень сложных, описывающих разнообразные аспекты функционирования объекта или взаимодействующих объектов, часто называют математическими моделями. Математические модели наиболее эффективно применяются для изучения воздействия лечебных или повреждающих факторов на организм и отдельные его системы, прогнозирования развития отдельных направлений медицинской службы и их оснащения ресурсами. Математические модели строятся и решаются на основе алгоритмов – системы фиксированного числа правил, составляющих формальное описание содержания и последовательности решения задач конкретного типа.

Математические методы используемые для постановки диагноза

Вряд ли кто станет отрицать, что диагностика играет в медицине важнейшую роль и что постановка диагноза требует от врача большого мастерства, знаний и интуиции. Точность диагноза и быстрота, с которой его можно поставить, зависят, разумеется, от очень многих факторов: от состояния больного, от имеющихся данных о симптомах и признаках заболевания и результатах лабораторных анализов, от общего объема медицинской информации о наблюдении таких симптомов при самых различных заболеваниях и, наконец, от квалификации самого врача. Своевременно поставленный точный диагноз часто облегчает выбор метода лечения и значительно повышает вероятность выздоровления больного. Исходя из всех этих соображений, вполне естественно попытаться определить условия, при которых диагноз может быть поставлен максимально быстро и точно. Однако в последние годы благодаря применению современных методов лечения и диагностики, основанных на новейших достижениях науки и техники, возможности получения успешных результатов значительно возросли. Поэтому важно найти точные методы описания, исследования, оценки и контроля процесса постановки диагноза. Как уже неоднократно указывалось, наилучший путь к точности и логике рассуждений при решении любой задачи - это математический подход. В принципе этот подход можно выбирать независимо от того, насколько труден и сложен рассматриваемый вопрос. Если мы имеем дело с большим числом взаимозависимых факторов, обнаруживающих значительную естественную изменчивость, то для достаточно эффективного описания сложной схемы их влияния существует лишь один способ - использование математического метода. Если число факторов или число категорий данных очень велико, то желательно, или даже необходимо, использовать электронную вычислительную машину, чтобы искомые результаты можно было получить за достаточно короткое время. Такой подход ни в коей мере не умаляет значения интуиции и воображения. Напротив, он открывает еще: больший простор для проявления этих качеств, освобождая врача от необходимости заниматься такими проблемами, которые можно сформулировать в численной и логической форме и, следовательно, решать математическими методами и с помощью вычислительной техники. Итак, что же можно сделать для того, чтобы применить эти идеи к медицинской диагностике? Как известно, среди математиков, специалистов в области вычислительной техники и врачей уже имеется ряд энтузиастов, работающих над применением математики и вычислительной техники в этой области. Естественно, что симпатии на стороне этих энтузиастов. Даже если бы практическое использование вычислительных машин для диагностики показалось бы кому-нибудь нежелательным, это все равно не умалило бы важности математического анализа рассматриваемых процессов, поскольку такой анализ должен значительно расширить и углубить наши знания. Разработка методов диагностики с помощью вычислительных машин находится пока еще на самой начальной стадии, однако исследователями, работающими в ряде стран, уже получены весьма обнадеживающие результаты, и дальнейшие изыскания в этой области следует считать весьма перспективными. Разумеется, концентрация внимания на постановке дифференциального диагноза является во многих отношениях чрезмерно упрощенным или, во всяком случае, ограниченным подходом к проблеме в целом. Мы будем предполагать, что все альтернативные диагнозы, из которых нужно выбрать один, четко и однозначно определены. Однако на практике дело обстоит совсем не так. Мнения специалистов о наилучших способах классификации болезней нередко расходятся, и новые данные могут потребовать пересмотра существующих схем. С этой проблемой связаны, естественно, вопросы медицинской таксономии, и, возможно, потребуется изучить на широкой основе применение методов числовой таксономии, рассмотренных в общем биологическом плане. Кроме того, успех лечения в каждом конкретном случае во многом зависит от предварительного диагноза. Этот диагноз может быть пересмотрен, если метод лечения, который считался наилучшим, оказывается неэффективным или если больной реагирует на него неожиданным образом. Фактически реакцию на лечение можно рассматривать как проверку правильности предварительного диагноза, и она служит дополнительным источником информации. Разумеется, этот способ широко применяется в клинической практике. Однако главное здесь в том, что нам может потребоваться математическое описание всего процесса - классификации болезней, постановки дифференциального диагноза и анализа результатов лечения, прежде чем при таком подходе мы сможем добиться сколько-нибудь значительных успехов.В литературе имеется довольно много статей по этому вопросу, однако по-настоящему авторитетного руководства еще не написано. Заслуживает внимания очень интересный отчет о конференции, состоявшейся в Мичиганском университете в 1964 г. в котором дается общий обзор широкого круга проблем, связанных с медицинской диагностикой. Отдельные статьи на эту тему имеются в трудах Рочестерских конференций.

Значение математики для медицинского работника

В настоящее время, согласно требованиям государственных стандартов и действующих программ обучения в медицинских учреждениях, основной задачей изучения дисциплины "Математика" является вооружение студентов математическими знаниями и умениями, необходимыми для изучения специальных дисциплин базового уровня, а в требованиях к профессиональной подготовленности специалиста заявлено умение решать профессиональные задачи с использованием математических методов. Такое положение не может не сказываться на результатах математической подготовки медиков. От этих результатов в определённой степени зависит уровень профессиональной компетентности медперсонала. Данные результаты показывают, что, изучая математику, в дальнейшем медработники приобретают те или иные профессионально-значимые качества и умения, а также применяют математические понятия и методы в медицинской науке и практике. Профессиональная направленность математической подготовки в медицинских образовательных учреждениях должна обеспечивать повышение уровня математической компетентности студентов-медиков, осознание ценности математики для будущей профессиональной деятельности, развитие профессионально значимых качеств и приёмов умственной деятельности, освоение студентами математического аппарата, позволяющего моделировать, анализировать и решать элементарные математические профессионально значимые задачи, имеющие место в медицинской науке и практике, обеспечивая преемственность формирования математической культуры студентов от первого к старшим курсам и воспитание потребности в совершенствовании знаний в области математики и её приложений.

Практическое применение математических методов

Практическое применение математических методов в медицине ограничено в основном обработкой результатов инструментальных методов обследования больных (компьютерная томография, эхокардиография и др.) . Существенно, важен вопрос о том, в каких областях применимы математические методы. Потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей как искусство и этика. Мы несколько конкретнее рассмотрим области применения математики в медицине. До сих пор мы имели в виду главным образом те медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Эту область довольно расплывчато называют исследованием операций . Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с медициной. В медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор. Пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностей статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов. Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение. Простейшее исследование повторяющихся эпидемий вероятностными методами показывает, что такого рода математическое описание позволяет в общих чертах объяснить важное свойство таких эпидемий - периодическое возникновение вспышек примерно одинаковой интенсивности, тогда как детерминистская модель дает ряд затухающих колебаний, что не согласуется с наблюдаемыми явлениями. При желании разработать более детальные, реалистические модели мутаций у бактерий или повторяющихся эпидемий эта информация, полученная с помощью предварительных упрощенных моделей, будет иметь очень большую ценность. В конечном счете, успех всего направления научных исследований определяется возможностями моделей, построенных для объяснения и предсказания реальных наблюдений. Одно из больших преимуществ, правильно построенной математической модели состоит в том, что она дает довольно точное описание структуры исследуемого процесса. С одной стороны, это позволяет осуществлять ее практическую проверку с помощью соответствующих физических, химических или биологических экспериментов. С другой стороны, математический анализ образом, чтобы в ней с самого начала была предусмотрена соответствующая статистическая обработка данных. Разумеется, множество глубоких биологических и медицинских исследований было успешно выполнено без особого внимания к статистическим тонкостям. Но во многих случаях планирование эксперимента, предусматривающее достаточное использование статистики, значительно повышает эффективность работы и обеспечивает получение большего объема информации о большем числе факторов при меньшем числе наблюдений. В противном случае эксперимент может оказаться неэффективным и неэкономичным и даже привести к неверным выводам. В этих случаях новые гипотезы, построенные на таких необоснованных выводах, не смогут выдержать проверку временем. Отсутствием статистического подхода можно в какой-то мере объяснить периодическое появление "модных" препаратов или метод лечения. Очень часто врачи ухватываются за те или иные новые препараты или методы лечения и начинают широко применять только на основании кажущихся благоприятных результатов, полученных на небольших выборках данных и обусловленных чисто случайными колебаниями. По мере того как у медицинского персонала накапливается опыт применения этих препаратов или методов в больших масштабах, выясняется, что возлагавшиеся, на них надежды не оправдываются. Однако для такой проверки требуется очень много времени и она весьма ненадежна и неэкономична; в большинстве случаев этого можно избежать путем правильно спланированных испытаний на самом начальном этапе. В настоящее время специалисты в области биоматематики настоятельно рекомендуют применять различные статистические методы при проверке гипотез, оценке параметров, планировании экспериментов и обследований, принятии решений или изучении работы сложных систем.

Практическое применение математических методов в Кесовогорской ЦРБ.

Делая проект на тему «Применение математических методов в медицине» мне стало интересно, а применяются ли математические методы в Кесовогорской центральной районной больнице(приложение). Для начала я посетила статистический отдел Кесовогорской ЦРБ. Там меня встретила Макеева Ольга Владимировна медстатистик (приложение 2). Ей как и всем врачам я задала вопросы: Нужна ли математика в медицине? в статистике? В чём заключается практическое применение математических методов? Таков был её ответ: Математика конечно нужна, особенно в статистике. Ведь моя работа осуществлять статистический учет и подготовку статистической информации для последующей обработки данных на ЭВМ в больнице. Организовывать статистический документооборот внутри медицинской организации, рациональное хранение оперативной статистической документации за отчетный период в подразделениях и в архиве медицинской организации, сдачу документации в архив медицинской организации в соответствии с установленными требованиями. Проводить углубленное статистическое исследование деятельности медицинской организации в целом и отдельных подразделений. Составляет программу исследования по конкретным задачам здравоохранения. Рассчитывает показатели, характеризующие деятельность медицинской организации; готовить отчеты медицинской организации. Организовывать и проводить совещания (занятия, семинары) по медицинской статистике. Составлять и обобщать периодическую информацию (неделя, месяц, квартал и т.д.) по данным первичной медицинской документации. Анализировать и оценивать информацию. Мне был показан годовой отчёт за 2013 год (приложение3) и книга по которой она работает(приложение 4).Дальше я прошла в стоматологический кабинет. Там со мной разговаривала медицинская сестра Фролова Надежда Евгеньевна (приложение 5). Ей тоже я задала вопрос: а нужна ли ей математика на что она ответила - конечно. Ведь моя задача это замешивание пломбы и прокладки, стерилизация инструментов (приложение 6). Без математики здесь не обойтись. Ведь нужно знать о концентрации растворов и пропорции разведения веществ (приложение 1). После посещения больницы я решила зайти в детскую консультацию. Там меня встретили мед. сёстры Королькова Светлана Геннадьевна и Калинина Нина Васильевна. На мои вопросы они ответили, так же как и предыдущие медицинские работники. Нина Васильевна рассказала, что их работа-это взвешивание детей, измерение роста, разведение растворов для прививок и конечно заполнение документов, где без математических методов никуда (приложение 7-11). Я лично увидела, как проходит их работа и убедилась в том, что Нина Васильевна была права (приложение12-14). Я своими глазами увидела, что в заполнение документов, в разведении лекарств и вообще в работе врачей без математики не обходится.

Заключение.

Медицинская наука, конечно, не поддаётся тотальной формализации, как это происходит, скажем, с физикой, но колоссальная эпизодическая роль математики в медицине несомненна. Все медицинские открытия должны опираться на численные соотношения. А методы теории вероятности (учёт статистики заболеваемости в зависимости от различных факторов) - и вовсе вещь в медицине необходимая. В медицине без математики шагу не ступить. Численные соотношения, например, учёт дозы и периодичности приёма лекарств. Численный учёт сопутствующих факторов, таких как: возраст, физические параметры тела, иммунитет. Мое мнение твердо стоит на том, что медики не должны закрывать глаза хотя бы на элементарную математику, которая просто необходима для организации быстрой, четкой и качественной работы. Каждый студент должен с первого курса обучения отметить для себя значение математики. И понять, что не только в работе, но и в повседневной жизни эти знания важны и намного упрощают жизнь.

Используемая литература

Руденко В.Г., Янукян Э.Г. Пособие по математике, Пятигорск 2002г,

Святкина К.А., Белогорская Е.В., «Детские болезни» - М.: Медицина, 1980г.

Воробьева Г.Н., Данилова А.Н.. Практикум по вычислительной математике. М.: «Высшая школа», 1990.

Н. Бейли. Математика в биологии и медицине. М.: Мир, 1970.

Кесовогорская ЦРБ

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Практическое применение математических методов в Кесовогорской ЦРБ. Делая работу на тему «Применение математических методов в медицине» мне стало интересно, а применяются ли математические методы в Кесовогорской центральной районной больнице.

Я посетила статистический отдел Кесовогорской ЦРБ. Там меня встретила Макеева Ольга Владимировна - медстатистик. Она ответила на все мои вопросы и показала книгу по которой она работает.

После посещения больницы я решила зайти в детскую консультацию. Нина Васильевна рассказала, что их работа-это взвешивание детей, измерение роста, разведение растворов для прививок и конечно заполнение документов, где без математических методов никуда. Я побывала на приёме,увидела как проходит их работа и убедилась в том, что Нина Васильевна была права. Я своими глазами увидела, что в заполнение документов, в разведении лекарств и вообще в работе врачей без математики не обходится.

Введение

Математика традиционно считается фундаментом многих наук. Математика - фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы. Математика давно превратилась в повседневное и эффективное орудие исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Медицина не является исключением.

Многие современные врачи считают, что дальнейший прогресс медицины находится в прямой зависимости от успехов математики в медицине и диагностике, в частности степени их интеграции и взаимной адаптации.

Новая теория медицины, которая сейчас бурно обсуждается, базируется на персонализации лечения – создании и осуществлении лечебных программ, модифицирующих течение болезни. Подходя к лечению больных, врач должен быстро и профессионально поставить диагноз, выбрать правильный лекарственный препарат, методику лечения, и максимально их индивидуализировать.

Очень важно увидеть новую патологию человека: сегодня эта задача остро стоит перед учеными всего мира – и для ее реализации уже накоплено немало возможностей, в том числе и российскими учеными. Среди наиболее перспективных технологий, используемых для этих целей является математика.

Развитие методов вычислительной математики и нарастание мощности компьютеров позволяют в наши дни выполнять точные расчеты в области динамики сложнейших живых и неживых систем с целью прогнозирования их поведения. Реальные успехи на этом пути зависят от готовности математиков и программистов к работе с данными, полученными традиционными для естественных и гуманитарных наук способами: наблюдение, описание, опрос, эксперимент.

Целью данной работы является рассмотрение места и роли математики в развитии современной теоретической и практической медицины.


Направления применения математических методов в медицине

Математические методы в медицине это совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В медицине и здравоохранении в круг явлений, изучаемых с помощью математики, входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне. Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете.



Систематические попытки использовать математики в биомедицинских направлениях начались в 80-х гг. 19 в. Общая идея корреляции, выдвинутая английским психологом и антропологом Гальтоном и усовершенствованная английским биологом и математиком Пирсоном, возникла как результат попыток обработки биомедицинских данных. Точно так же из попыток решить биологические проблемы родились известные методы прикладной статистики. До настоящего времени методы математической статистики являются ведущими математическими методами для биомедицинских наук. Начиная с 40-х гг. 20 в. математические методы проникают в медицину через кибернетику и информатику. Наиболее развиты математические методы в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем. Благодаря математике значительно расширилась область познания основ жизнедеятельности и появились новые высокоэффективные методы диагностики и лечения; математика лежит в основе разработок систем жизнеобеспечения, используется в медицинской технике.

Применение методов математической статистики облегчается тем, что стандартные пакеты прикладных программ для ЭВМ обеспечивают выполнение основных операций по статистической обработке данных. Математика смыкается с методами кибернетики и информатики, что позволяет получать более точные выводы и рекомендации, внедрять новые средства и методы лечения и диагностики. Математические методы применяют для описания биомедицинских процессов (прежде всего нормального и патологического функционирования организма и его систем, диагностики и лечения). Описание проводят в двух основных направлениях. Для обработки биомедицинских данных используют различные методы математической статистики, выбор одного из которых в каждом конкретном случае основывается на характере распределения анализируемых данных. Эти методы предназначены для выявления закономерностей, свойственных биомедицинским объектам, поиска сходства и различий между отдельными группами объектов, оценки влияния на них разнообразных внешних факторов и т.п.



Описания свойств объектов, получаемые с помощью методов математической статистики, называют иногда моделями данных. Модели данных не содержат какой-либо информации или гипотез о внутренней структуре реального объекта и опираются только на результаты инструментальных измерений. Другое направление связано с моделями систем и основывается на математическом описании объектов и явлений, содержательно использующих сведения о структуре изучаемых систем, механизмах взаимодействия их отдельных элементов. Разработка и практическое использование математических моделей систем (математическое моделирование) составляют перспективное направление применения математики в медицине. Статистические методы обработки стали привычным и широко распространенным аппаратом для работников медицины и здравоохранения, например диагностические таблицы, пакеты прикладных программ для статистической обработки данных на ЭВМ.

Обычно объекты в медицине описываются множеством признаков одновременно. Набор учитываемых при исследовании признаков называется пространством признаков. Значения всех этих признаков для данного объекта однозначно определяют его положение как точку в пространстве признаков. Если признаки рассматриваются как случайные величины, то точка, описывающая состояние объекта, занимает в пространстве признаков случайное положение.

Математическое моделирование систем является вторым кардинальным направлением применения математики в медицине. Основным понятием, используемым при таком анализе, является математическая модель системы.

Под математической моделью понимается описание какого-либо класса объектов или явлений, выполненное с помощью математической символики. Модель представляет собой компактную запись некоторых существенных сведений о моделируемом явлении, накопленных специалистами в конкретной области (физиологии, биологии, медицине).

В математическом моделировании выделяют несколько этапов. Основным является формулирование качественных и количественных закономерностей, описывающих основные черты явления. На этом этапе необходимо широкое привлечение знаний и фактов о структуре и характере функционирования рассматриваемой системы, ее свойствах и проявлениях. Этап завершается созданием качественной (описательной) модели объекта, явления или системы. Этот этап не является специфическим для математического моделирования. Словесное (вербальное) описание (часто с использованием цифрового материала) в ряде случаев является конечным результатом физиологических, психологических, медицинских исследований. Математической моделью описание объекта становится только после того, как оно на последующих этапах переводится на язык математических терминов. Модели в зависимости от используемого математического аппарата подразделяются на несколько классов. В медицине чаще всего применяются описания с помощью уравнений. В связи с созданием компьютерных методов решения так называемых интеллектуальных задач начали распространяться логико-семантические модели. Этот тип моделей используется для описания процессов принятия решений, психической и поведенческой деятельности и других явлений. Часто они принимают форму своеобразных «сценариев», отражающих врачебную или иную деятельность. При формализации более простых процессов, описывающих поведение биохимических, физиологических систем, задач управления функциями организма, применяются уравнения различных типов.

Если исследователя не интересует развитие процессов во времени (динамика объекта), можно ограничиться алгебраическими уравнениями. Модели в этом случае называются статическими. Несмотря на кажущуюся простоту, они играют большую роль в решении практических задач. Так, в основе современной компьютерной томографии лежит теоретическая модель поглощения излучения тканями организма, имеющая вид системы алгебраических уравнений. Решение ее компьютером после преобразований представляется в виде визуальной картины томографического среза.

Различные конкретные математические методы применяются к таким областям биологии и медицины, как таксономия, экология, теория эпидемий, генетика, медицинская диагностика и организация медицинской службы.

В том числе методы классификации в применении к задачам биологической систематики и медицинской диагностики, модели генетического сцепления, распространения эпидемии и роста численности популяции, использованию методов исследования операций в организационных вопросах, связанных с медицинским обслуживанием,

Пользуются также математические модели для таких биологических и физиологических явлений, в которых вероятностные аспекты играют подчиненную роль и которые связаны с аппаратом теории управления или эвристического программирования.

Существенно, важен вопрос о том, в каких областях применимы математические методы. Потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей как искусство и этика. Мы несколько конкретнее рассмотрим области применения математики в биологии и медицине.

До сих пор мы имели в виду главным образом те медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Далее мы перейдем к проблемам, связанным с поведением животных и психологией человека, т. е. к использованию прикладных наук для достижения некоторых более общих целей. Эту область довольно расплывчато называют исследованием операций. Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с медициной.

В медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор. Пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностей статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов.

Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение

Простейшее исследование повторяющихся эпидемий вероятностными методами показывает, что такого рода математическое описание позволяет в общих чертах объяснить важное свойство таких эпидемий - периодическое возникновение вспышек примерно одинаковой интенсивности, тогда как детерминистская модель дает ряд затухающих колебаний, что не согласуется с наблюдаемыми явлениями. При желании разработать более детальные, реалистические модели мутаций у бактерий или повторяющихся эпидемий эта информация, полученная с помощью предварительных упрощенных моделей, будет иметь очень большую ценность. В конечном счете, успех всего направления научных исследований определяется возможностями моделей, построенных для объяснения и предсказания реальных наблюдений.

Похожие статьи

  • Карта сознания дэвида хокинса Результаты исследований Хокинса

    Дэвид Хокинс Путь просветления: 365 ежедневных размышлений Какое суждение лучше всего выражает жизнь, целиком посвященную духовному совершенствованию?Gloria in Excelsis Deo! «Слава в Вышних Богу!» КАЖДЫЙ ШАГ НА ПУТИ К ПРОСВЕТЛЕНИЮ не...

  • Грядет зачистка нелояльных блогеров

    В среду утром популярный сервис интернет-дневников "Живой журнал" вновь . Представители управляющей компании ресурса SUP отказались комментировать ситуацию, сказав только, что речь, возможно, идет о последствиях кибератак. В данный момент...

  • Американский проект по созданию атомной бомбы назывался

    75 лет назад немецкие ученые О. Ган и Ф. Штрассман сделали сенсационное открытие - расщепили ядро урана-235 с помощью нейтрона. Знаменитый Эрнест Резерфорд, названный «отцом» ядерной физики, не верил в возможность получения атомной...

  • Какие русские народные сказки бытовые

    1 - Про малютку-автобус, который боялся темноты Дональд Биссет Сказка о том, как мама-автобус научила своего малютку-автобуса не бояться темноты… Про малютку-автобус, который боялся темноты читать Жил-был на свете малютка-автобус. Он был...

  • Освобождение вены Рассекреченные списки бойцов 2 украинского фронта

    Образован на юго-западном направлении советско-германского фронта 20 октября 1943 г. на основании приказа Ставки ВГК № 30227 от 16.10.1943 г. путем переименования Степного фронта . В его состав были включены 4-я , 5-я и 7-я гвардейские,...

  • Черноморский флот российской федерации

    Posted By сайт on 15.08.2012 Черноморский флот – корабли черноморского флота Севастополя фотографии И не осмотреть с воды Черноморский флот России и Украины было бы не правильно. Хотя бы его небольшую часть. Да и плюс к этому — если вы...