Получение и применение воды. Способы и области применения воды. Уникальные свойства воды Вода ее физические и химические свойства кратко

Общеизвестно, что жизнь на планете Земля возникла благодаря наличию воды. Именно воду или признаки ее присутствия в прошлом ищут американцы на планете Марс, чтобы ответить на вопрос, была ли жизнь на Марсе.

Вода - наиболее распространенное, доступное и дешевое вещество. В воде зародилась жизнь, вышла из нее, постепенно заселив сушу и воздух. Без воды немыслима жизнь на планете Земля, немыслима жизнедеятельность человека. Именно доступность и незаменимость воды обусловила ее широкое применение в быту, промышленности и сельском хозяйстве, медицине - во всех сферах человеческой деятельности. Трудно вспомнить, где вода не применяется. Но именно это и создает проблемы, связанные с ее подготовкой к использованию, с ее очисткой .

Вода в природе

Вода - жидкость без запаха, вкуса, цвета (в толстых слоях голубоватая); плотность р = 1,000 г/см3 (при 3,98°С), Тплавл. = 0°C, Ткип = 100°C. Одно из самых распространенных веществ в природе. Гидросфера занимает 71% биосферы. Биосфера, включающая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами, ничтожно тонка - от глубин океанских впадин до высот снежных вершин слой биосферы достигает толщины всего 20 км, что составляет лишь 0,3% радиуса Земли. К тому же эта обетованная пленка на поверхности Земли в основном водная, и в этом смысле наша планета является планетой Воды.

Заглянем в "Словарь" Брокгауза и Ефрона: "минерал" (от mina - подземный ход, штольня) - это название дают однородным твердым или жидким неорганическим произведениям природы, определенного химического состава, входящим в состав твердой оболочки земли, а также и других небесных тел.

Таким образом, жидкая вода - жидкий минерал, твердая вода (лед) - твердый минерал. В последние десятилетия обнаружены большие запасы топлива в виде твердых кристаллогидратов природных углеводородов. Вода - прекрасный растворитель и потому невозможно встретить в природе жидкую "чистую" воду, то есть воду, в которой не растворены неорганические и органические вещества. Вода - прекрасная среда обитания живых организмов и потому невозможно встретить в природе "чистую" воду, т.е. воду, в которой бы не обитали микробы, бактерии, моллюски, рыбы и т.д.

Вода и человек

Столь универсальный по свойствам и широте распространения минерал нашел чрезвычайно широкое использование в жизнедеятельности человека. Вода используется в быту, в промышленности, в сельском хозяйстве - где угодно. Приведу примеры того, в каких объемах используется вода.

В теплоэнергетике вода - теплоноситель и рабочее тело. Тепловые электростанции используют на производство одного гигаватта электроэнергии 32-42 м3 в секунду воды. В частности, на охлаждение конденсатора турбины только одного энергоблока используется от 6 до 10 тыс.м3/ч. Если учесть, что в 1990 г. СССР произвел 1,726 млрд ГВт-ч электроэнергии, а к 2010 г. планировал увеличить производство электроэнергии только на ТЭС на 50-55%, то можно считать, что развал СССР, резкое падение производства и значительное снижение объемов производимой электроэнергии спасли республики бывшего СССР от экологической катастрофы. В металлургии вода используется для охлаждения оборудования, как теплоноситель и как рабочее тело для ТЭС, которые есть на каждом металлургическом комбинате, но не относятся к Министерству энергетики. То есть, не учтены в вышеприведенных цифрах. Только на охлаждение одной доменной печи используется до 10 тыс.м3/ч.

В химии вода - растворитель; один из реагентов некоторых химических реакций; "транспортное средство", то есть среда, позволяющая перемещать реагенты, продукты реакции из одного технологического аппарата в другой; теплоноситель и хладагент в тепловых процессах. В конечном итоге, вывод в окружающую среду жидких отходов производства осуществляется тоже в виде водных растворов и суспензий. Указать общие объемы воды, используемой химической промышленностью, не представляется возможным. Чтобы иметь хоть какое-то представление об объемах используемой воды и водных растворов, укажу, что только содовые заводы СССР выпускали в год свыше 1 млн т кальцинированной соды, а на производство 1 т кальцинированной соды (только в виде раствора хлорида натрия - рассола) расходовалось 5,5 м3 рассола. Потом в технологическом процессе этот объем увеличивался приблизительно в два раза и выводился в виде жидких отходов. Перемножить между собой эти цифры сможет сам читатель.

В медицине вода - растворитель, лекарственное средство, средство санитарии и гигиены, "транспортное средство". Повышение уровня медицинского обслуживания и рост народонаселения планеты Земля естественным образом ведет к росту водопотребления на медицинские цели.

В сельском хозяйстве вода - транспортное средство питательных веществ к клеткам растений и животных, участник обменных реакций, участник процесса фотосинтеза, реакций гидролиза, регулятор температуры живых организмов. Объемы воды, которые затрачиваются для полива сельскохозяйственных растений, при кормлении животных, птицы, не уступают объемам, используемым промышленностью.

В быту вода - средство санитарии и гигиены, участник химических реакций, протекающих при приготовлении пищи, теплоноситель, транспортное средство, удаляющее продукты жизнедеятельности человека в канализацию. Норма водопотребления на одного человека существенно разная по отдельным городам. Так, например, в Санкт-Петербурге она - 0,70 м3/мес, в среднем по Украине - 0,32 м3/мес, а в Европе - 0,11 м3/мес. Вспомните о приблизительно 6 млдр. человек, населяющих планету Земля и вам станет ясно, почему время от времени возникают разговоры о все возрастающих проблемах с питьевой водой даже в "мокрых" регионах планеты.

Что такое "чистая" вода?

Понятно, что для минерала, происходящего из разных месторождений, разного состава и столь широкого диапазона применения не могут быть сформулированы единые требования по "качеству". К сырой воде, то есть воде из источника водоотбора, требования одни. К "очищенной" воде, то есть воде, подготовленной к дальнейшему использованию, требования совершенно другие.

Более того, представления о качестве используемой воды с годами меняются, отражая:

  • знания о влиянии на живой организм или технологический процесс отдельных компонентов раствора, называемого водой;
  • разработанные и освоенные методы анализа;
  • уровень развития науки и техники;
  • "обратную связь" между потребляемой человеком водой и тем набором растворенных веществ, твердых включений и микроорганизмов, которые сбрасываются в виде сточных вод, жидких отходов промышленного и сельскохозяйственного производства.

Например, лет 200 назад для оценки качества питьевой воды использовались только органолептические методы: оценка цвета, вкуса, запаха. Сейчас перечень анализов, выполняемых санитарной лабораторией предприятия пищевой промышленности, размещается на двух страницах, заполненных мелким шрифтом. По традиции в таком списке остаются и органолептические показатели качества. Полученные в виде анализа знания о составе воды из источника водоснабжения должны вести к технологическим приемам очистки от тех или иных загрязнений. Так мы естественным образом переходим к обсуждению методов водоподготовки и водоочистки .

Что такое водоподготовка и очистка воды?
Обратимся к справочной литературе.
Энциклопедический словарь медицинских терминов сообщает: "Очистка воды (син. очистка природных вод) - комплекс санитарно-технических мероприятий, направленных на удаление примесей, представляющих опасность для человека".
Малая медицинская энциклопедия: "Очистка воды - обработка воды с помощью различных технологических приемов (коагуляция, фильтрация и др.) с целью улучшения ее органолептических и физико-химических свойств в соответствии с требованиями ГОСТ - см. "вода".
Сельскохозяйственный словарь: "Очистка воды - приведение качества исходной воды в соответствие с требованиями потребителя. Способы очистки воды: осветление (устранение мутности), обесцвечивание (устранение органических веществ), обеззараживание, дезодорация, опреснение, умягчение".
Большая Советская Энциклопедия: "Водоподготовка - обработка воды, поступающей из природного водоисточника на питание паровых и водогрейных котлов или для различных технологических целей. Водоподготовка производится на ТЭС, транспорте, в коммунальном хозяйстве, на промышленных предприятиях.

Подведем итог.
Водоподготовкой условились называть приведение качества воды в соответствие с требованиями промышленных предприятий. Очисткой воды, используемой для нужд человека и животных, называют приведением качества воды к нормам, обусловленным соответствующими ГОСТ.

Очисткой сточных вод, сбрасываемых промышленными и коммунальными предприятиями, по аналогии назовем приведение состава жидких стоков в соответствие с нормами ПДК (предельно допустимых концентраций).

Как уже отмечалось выше, в связи с ростом знаний и ухудшением экологической ситуации как следствием жизнедеятельности человека нормы на потребляемую воду все время пересматриваются. Чтобы им соответствовать, совершенствуются технологии очистки воды, оборудование.

Например, фармакопея США (USP) дает определение нескольким типам воды: очищенная вода, вода для инъекций, стерилизованная вода, стерильная вода для инъекций, стерильная бактериостатическая вода для инъекций, стерильная вода для ингаляций и стерильная вода для орошения. USP устанавливает нормы методов стерилизации и расфасовки для отдельных видов используемой воды.

Тема 3.1. Вода, растворы.

Периодическая печать

Журнал «Вестник образования России» http:/www.vestniknews.ru или http:/www.informika.ru

Журнал «Аутизм и нарушения развития» E-mail: [email protected]

Журнал «Профильная школа»

Журнал «Дефектология» [email protected]

Журнал «Практическая психология и логопедия» [email protected]

Журнал «Психология» ig-socin@ mail.ru

Журнал «Профессиональное образование» [email protected]@FIRO.RU

Журнал «Психическое здоровье»

Журнал «Коррекционная педагогика»

Журнал «Вопросы психологии»

Журнал «Специальная психология»

Журнал «Обучение и воспитание детей с проблемами в развитии»

Журнал «Вестник Московского Университета. Психология»

Журнал «Психологическая наука и образование»

Журнал «Психология обучения»

Журнал «Вестник психосоциальной и коррекционно-реабилитационной работы»

Журнал «Дошкольное воспитание»

Введение

Вода – самое удивительное и самое распространённое природное соединение – источник жизни и условие её формирования на Земле. Ограниченность водных ресурсов создаёт исключительно сложные проблемы для человечества.

Вся практическая деятельность человека с самой глубокой древности связана
с использованием воды и водных растворов.

В течение последних полутора-двух столетий учёные достигли значительных успехов в изучении строения и свойств воды, по существу, предопределяющих структуру и облик окружающего нас биологического мира. Вода оказалась весьма неординарной жидкостью, трудно поддающейся не только непосредственным экспериментальным исследованиям, но и моделированию.

Многие хорошо знакомые свойства воды исключительны в природе. И поэтому вода занимает особое положение по сравнению с другими веществами, известными
на Земле. Чем глубже учёные постигали природу воды, тем больше убеждались
в оригинальности её поведения, в неочевидности её свойств, в новых, ещё не до конца раскрытых её структурных особенностях.

Во все времена естествоиспытатели не обходили своим вниманием воду, пытаясь постичь секрет её удивительных свойств. И каждый раз отступали, признаваясь в своём бессилии.

Вода, можно сказать, – самая популярная и самая загадочная жидкость из всех существующих на Земле. Её издавна воспевали, поэты посвятили ей удивительные строки. А учёные по сей день, как и сотни лет назад, не могут дать точного ответа на, казалось бы, несложный вопрос: что такое вода?

1. Вода в природе

Вода – самое распространенное вещество, на Земле она распределена неравномерно.

Поверхность земного шара на 3/4 покрыта водой – это океаны, моря, озёра, ледники. Количество воды на поверхности воды оценивается в 1,39 . 10 21 кг. В довольно больших количествах вода находится в морях и океанах (1,34 . 10 21 кг). Общие запасы свободной воды на земле составляют 1,4 млрд. км 3 . В совокупности жидкая водная оболочка Земли называется гидросферой, а твёрдая криосферой.


Самым вместительным хранилищем воды являются недра Земли. В коре Земли воды столько же, сколько и в Мировом океане, а в мантии в 10-12 раз больше.

Основное количество воды содержится в океанах (около 97,6%). В виде льда
на нашей планете воды имеется 2,14%. Вода рек и озёр составляет всего лишь 0,29%
и атмосферная вода – 0,0005%.

Природная вода всегда содержит растворённые соли, газы и органические вещества, а также микроорганизмы. Состав примесей зависит от происхождения воды. По минерализации различают следующие виды воды: атмосферные осадки (10-20 мг/кг), ультрапресные (до 200 мг/кг), пресные (200-500 мг/кг), слабоминерализованные
(0,5-1,0 г/кг), солоноватые (1-3 г/кг), с повышенной солёностью (10-35 г/кг), переходные к рассолам (35-50 г/кг), рассолы (более 50 мг/кг); максимальные концентрации солей содержат воды соляных озёр (до 300 г/кг) и глубокозалегающие подземные воды
(до 600 г/кг). В пресных водах преобладают ионы Ca 2+ , Mg 2+ , CI - , Na + , K + .
К микрокомпонентам природной воды относятся B, Li, Rb, Cu, Zn, Al, Be, W, U, Br, I
и др. Из растворённых газов в природных водах присутствуют N 2 , O 2 , CO 2 , благородные газы и углеводороды. Концентрация органических веществ в воде рек около 20 мг/кг,
в водах океана – около 4 мг/кг, причём их состав чрезвычайно разнообразен.

2. Биологическая роль воды

Биологическая роль воды обусловлена её уникальной химической структурой.
В водной среде возникла жизнь. Недостаток воды вызывает нарушение жизнедеятельности всех организмов, а её длительное отсутствие могут переносить лишь покоящиеся формы жизни (споры, семена растений). В большинстве случаев вода является неотъемлемым компонентом живых организмов. Функции воды многообразны: она служит растворителем для различных соединений, средой для реакций обмена веществ, определяет объём клеток и внеклеточных жидкостей, обеспечивает транспорт веществ в организме, участвует в терморегуляции. Содержание воды в разных организмах различается: например, у водорослей на долю воды приходится 90-98%,
в листьях наземных растений – 75-86%, в семенах злаков – 12-14%, у мхов и лишайников – 5-7%, у кишечнополостных – 95-98%, у насекомых – 45-65%, у млекопитающих –
60-70%. Неодинаково оно и в различных органах и тканях: самая богатая водой ткань
в теле человека – стекловидное тело глаза, содержащее 99% воды. Самая же бедная – эмаль зуба. В ней воды всего лишь 0,2%.

Вода также образуется в организме вследствие окисления жиров, углеводов
и белков, принятых с пищей. Такую воду называют метаболической. В медицине
и биологической науке метаболизмом называют процессы превращения веществ
и энергии, лежащие в основе жизнедеятельности организмов. Белки жиры и углеводы окисляются в организме с образованием воды (H 2 O) и углекислого газа (диоксида углерода CO 2): при окислении 100 г жира образуется 107 г воды, а при окислении 100 г углеводов – 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой
и не потребляют ее извне.

Общий объём воды, потребляемый человеком в сутки при питье и с пищей, составляет 2–2,5 л. Благодаря водному балансу столько же воды и выводится
из организма. Через почки и мочевыводящие пути удаляется около 50-60% воды.

При потере организмом человека 6-8% влаги повышается температура тела, краснеет кожа, учащается сердцебиение и дыхание, появляется мышечная слабость
и головокружение, начинается головная боль. Потеря 10% воды может привести
к необратимым изменениям в организме, а потеря 15-20% приводит к смерти, поскольку кровь настолько густеет, что с её перекачкой не справляется сердце.

Поэтому вода так важна для человека и живых организмов в целом.

3. Строение молекулы воды

Вода (оксид водорода, химическая формула H 2 O), простейшее химическое соединение. Молекула воды состоит из двух атомов водорода и одного атома кислорода. Связи между тремя атомами очень прочные. Молекулярная масса воды 18,016.

Оба элемента – водород и кислород – заметно выделяются из всех химических элементов, представленных в периодической системе Менделеева.

Водород как «горючий воздух» был известен ещё в 16 веке. За способность, сгорая, производить воду, «горючий воздух» впоследствии переименовали в «гидрогениум», т.е. рождающий воду.

Молекула воды

Молекула воды состоит из одного атома кислорода и двух атомов водорода (H 2 O). Схематично строение молекулы воды можно изобразить так:

Молекула воды является так называемой полярной молекулой, потому что ее положительный и отрицательный заряды не распределены равномерно вокруг какого-то центра, а размещены асимметрично, образуя положительный и отрицательный полюсы. Рисунок показывает в чрезвычайно упрощенном виде, как присоединены два атома водорода к одному атому кислорода, образуя молекулу воды.

Угол, отмеченный на рисунке, и расстояние между атомами зависят от агрегатного состояния воды (подразумеваются равновесные параметры, т.к. имеют место постоянные колебания). Так, в парообразном состоянии угол равен 104°40", расстояние O-H – 0,096 нм; во льду угол – 109°30", расстояние O-H – 0,099 нм. Различие параметров молекулы
в парообразном (свободном) состоянии и во льду вызвано влиянием соседних молекул. Также влиянию подвержены и молекулы в жидкой фазе, в которой помимо влияния соседних молекул воды существует сильное влияние растворенных ионов других веществ.

История определения состава молекулы воды

Начиная с истоков химии, учёные в продолжение довольно большого периода времени считали воду простым веществом, так как она не могла быть разложена в результате тех реакций, которые были известны в то время. Кроме того, постоянство свойств воды как бы подтверждало это положение.

Весной 1783 г., Кавендиш в своей кембриджской лаборатории работал с недавно открытым "жизненным воздухом" - так в то время называли кислород, и "горючим воздухом" (так называли водород). Он смешивал один объем "жизненного воздуха"
с двумя объемами "горючего воздуха" и пропускал через смесь электрический разряд. Смесь вспыхивала, и стенки колбы покрывались капельками жидкости. Исследуя жидкость, ученый пришел к выводу, что это чистая вода. Ранее подобное явление описал французский химик Пьер Макер: он ввел в пламя "горючего воздуха" фарфоровое блюдце, на котором образовались капельки жидкости. Каково же было удивление Макера, когда он исследовал образовавшуюся жидкость, и обнаружил что это вода. Получался какой-то парадокс: вода, гасящая огонь, сама образуется при горении. Как мы теперь понимаем, происходил синтез воды из кислорода и водорода:

H 2 + O 2 → 2H 2 O + 136,74 ккал.

В обычных условиях эта реакция не идет, и чтобы водород стал активен, нужно повысить температуру смеси, например с помощью электрической искры, как в опытах Кавендиша. Генри Кавендиш располагал достаточными данными, чтобы установить,
в каких пропорциях входит кислород и водород в состав воды. Но он этого не сделал. Возможно, ему помешала глубокая вера в теорию флогистона, в рамках которой он пытался интерпретировать свои эксперименты.

Весть об опытах Кавендиша достигла Парижа в июне того же года. Лавуазье сразу же повторил эти опыты, затем провел целую серию подобных экспериментов и через несколько месяцев 12 ноября 1783 г. в день святого Мартина доложил результаты исследований на традиционном собрании Французской академии наук. Любопытно название его доклада, характерное для всей той несуетливой педантичной эпохи великих открытий естествознания: "О природе воды и экспериментах, по-видимому, подтверждающих, что это вещество не является, строго говоря, элементом, а может быть разложено и образовано вновь". Доклад был встречен горячими возражениями – данные Лавуазье явно противоречили уважаемой и популярной в то время теории флогистона. Лавуазье сделал правильный вывод, что вода образуется при соединении "горючего газа" с кислородом и содержит (по массе) 15% первого и 85% второго (современные данные – 11,19% и 88,81%).

Через два года Лавуазье вновь вернулся к опытам с водой. Академия наук поставила перед Лавуазье практическую задачу – найти дешевый способ получения водорода как самого легкого газа для нужд нарождающегося воздухоплавания. Лавуазье привлек к работе военного инженера, математика и химика Жана Мёнье. В качестве исходного вещества они выбрали воду – вряд ли можно было отыскать сырье дешевле. Зная, что вода – это соединение водорода с кислородом, они пытались найти способ отнять от нее кислород. Для этой цели годились различные восстановители, наиболее же доступным было металлическое железо. Из реторты-кипятильника водяные пары поступали в раскаленный докрасна на жаровне ружейный ствол с железными опилками. При температуре красного каления (800 °С) железо вступает в реакцию с водяным паром, и выделяется водород:

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Образовавшийся при этом водород собирался, а не прореагировавшие водяные пары конденсировались в холодильнике и отделялись в виде конденсата от водорода. Из каждых 100 гран воды получалось 15 гран водорода и 85 гран кислорода (1 гран = 62,2 мг). Эта работа имела и важное теоретическое значение. Она подтвердила ранее сделанные выводы (из опыта по сжиганию водорода в кислороде под колоколом), что вода содержит 15% водорода и 85% кислорода (современные данные – 11,19% и 88,81%).

Исходя из того, что "горючий воздух" участвует в образовании воды, французский химик Гитон де Морво в 1787 г. предложил назвать его hydrogene (от слов гидро – вода и геннао – рождаю). Русское слово "водород", т.е. "рождающий воду", является точным переводом латинского названия.

Жозеф Луи Гей-Люссак и Александр Гумбольдт, проведя совместные опыты в 1805 году, впервые установили, что для образования воды необходимы два объема водорода и один объем кислорода. Подобные мысли были высказаны и итальянским ученым Амедео Авогадро. В 1842 г. Жан Батист Дюма установил весовое соотношение водород и кислорода в воде как 2:16.

Однако в силу того что с атомными массами элементов в первой половине XIX века было много неразберихи и эта обстановка еще больше осложнилась в связи с введением понятия "эквивалентный вес", то долгое время формула воды записывалась в самых различных вариантах: то как HO, то как H 2 O и даже H 2 O 2 . Об этом писал Д.И. Менделеев: "В 50-х годах одни принимали O=8, другие O=16, если H=1. Вода для первых была HO, перекись водорода HO 2 , для вторых, как ныне, вода H 2 O, перекись водорода H 2 O 2 или HO. Смута, сбивчивость господствовали...".

После Международного конгресса химиков в Карлсруэ, состоявшегося в 1860 году, удалось внести ясность в некоторые вопросы, сыгравшие заметную роль в дальнейшем развитии атомно-молекулярной теории, а, следовательно, и в правильном толковании атомарного состава воды. Была установлена единая химическая символика.

Экспериментальные исследования, выполненные в XIX веке весовыми и объемными методами, в конце концов, убедительно показали, что вода как химическое соединение может быть выражена формулой H 2 O.

Как уже известно, молекула воды довольно "однобока" - оба атома водорода примыкают к кислороду с одной стороны. Интересно, что эта чрезвычайно важная особенность молекулы воды была установлена чисто умозрительно задолго до эпохи спектроскопических исследований английским профессором Д. Берналом. Он исходил из того, что вода обладает весьма сильным электрическим моментом (в то время, в 1932 г., это было известно). Проще всего, конечно, молекулу воды "сконструировать", расположив все входящие в нее атомы по прямой линии, т.е. H–O–H. "Однако, – пишет Бернал, – водяная молекула подобным образом построена быть не может, ибо при такой структуре молекула, содержащая два положительных атома водорода и отрицательный атом кислорода, была бы электрически нейтральной, не обладала бы определенной направленностью… электрический момент может быть только, если оба атома водорода примыкают к кислороду с одной и той же стороны".

Водород – единственный элемент, не имеющий полностью заполненной электронной оболочки – 1s 1 . Из-за исключительной простоты его строения (один протон и один электрон) ему присущи совершенно особые свойства. Между молекулами, образованными водородом с другими элементами, возникают единственные в своём роде водородные связи, сила взаимного притяжения которых по величине совершенно несравнима с взаимодействием всех прочих молекул.

В настоящее время известно 5 изотопов атома водорода с атомными массами
1 (протий), 2 (дейтерий), 3 (тритий), 4 и 5 (названия пока не даны). Наиболее распространённое соединение водорода – вода, в основе которой находится протий.

Недавно обнаружены изотопы водорода с атомными массами 4 и 5, но физические и химические свойства обоих изотопов пока не изучены. Известно только, что время их существования ничтожно мало.

Кислород открыт в 1774 г. английским химиком Джозеф Пристли. Он занимает восьмое место в периодической системе Менделеева. Его внутренняя электронная оболочка укомплектована полностью (два электрона), на внешней имеется 6 электронов – 1s 2 2s 2 2p 4 . Кислород – элемент с резко выраженными электроположительными свойствами. Он атакует все атомы, отдающие электроны (к каковым, прежде всего, относится водород),
и представляет собой один из наиболее агрессивных элементов в природе.

Известно 3 изотопа кислорода с атомными массами 16, 17 и 18. Но никаких данных о физико-химических свойствах изотопов 17 О и 18 О нет, наукой они не изучены.

При нормальных условиях вода – жидкость без запаха, вкуса и цвета.

Атомы H и O в молекуле воды расположены в вершинах равнобедренного треугольника с длиной связи O-H 0,0957 нм: угол H-O-H = 104,5 о.

Вода существует в твёрдом, жидком и газообразном состоянии. Молекулы воды взаимодействуют друг с другом и с полярными молекулами других веществ (атомы водорода могут образовывать водородные связи с атомами O, N, F, CI, S и др.).

Каждая молекула воды способна образовывать 4 водородные связи: две – как донор протонов, две – как акцептор. Средняя длина таких связей около 0,28 нм.

Трёхмерная сетка водородных связей сохраняется в жидкой воде. Установлено объединение молекул воды в обширные кластеры (130 молекул H 2 O при 0 о С, 90 – при
20 о С, 60 – при 72 о С, время жизни 10 -11 - 10 -10 с)

Изотопный состав. Существует 9 разновидностей молекул воды, включающих только стабильные изотопы. Их содержание в природной воде в среднем составляет (моль, %): 1 H 2 16 O – 99,73; 1 H 2 18 O – 0,2; 1 H 2 17 O – 0,04; 1 H 2 H 16 O - 0,03; остальные присутствуют в ничтожных количествах.

И кислород, и водород имеют природные и искусственные изотопы. В зависимости от типа изотопов, входящих в молекулу, выделяют следующие виды воды: лёгкая вода (просто вода), тяжёлая вода (дейтериевая), сверхтяжёлая вода (тритиевая). Исследователи раскрывают всё более тонкие и сложные механизмы «внутренней организации» водной массы. Изучение структуры жидкой воды ещё не закончено; оно даёт всё новые факты, углубляя и усложняя наши представления об окружающем мире.

4. Свойства воды

4.1. Химические свойства воды

Вода является наиболее распространённым растворителем на земле, во многом определяющим характер химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ.

Воду иногда рассматривают, как кислоту и основание одновременно (катион H + анион OH -). В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода. Сама по себе вода относительно инертна в обычных условиях, но её сильно полярные молекулы образуют гидраты и кристаллогидраты. Сольволиз и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично.

Вода имеет высокую диэлектрическую проницаемость, самую высокую из всех известных соединений. Благодаря этому, вода проявляет себя как универсальный растворитель. Нет такого вещества, следы которого нельзя было бы обнаружить в воде. Обычно растворимость возрастает с увеличением температуры. Растворимость в воде малополярных веществ (газов) сравнительно мала. С ростом давления и при понижении температуры растворимость газов возрастает. Между растворёнными в воде ионами, атомами, молекулами, не вступающими с ней в химические реакции, и молекулами воды существуют межмолекулярные взаимодействия.

Вследствие высокой растворяющей способности воды, получить её в чистом виде трудно. Для научных исследований, в медицине и пр. применяют дистиллированную воду; абсолютно чистую воду синтезируют из H 2 и O 2 .

Вода – слабый электролит, диссоциирующий по уравнению: H 2 O = H + + OH - . Степень диссоциации воды возрастает при повышении температуры. Диссоциация воды – причина гидролиза солей слабых кислот и оснований. Концентрация ионов H + – важная характеристика водных растворов.

Вода окисляется кислородом до H 2 O 2 . При взаимодействии воды с F 2 образуются HF и другие соединения. С остальными галогенами при низких температурах вода образует смеси кислот (например, HCI и HCIO). При пропускании паров воды через раскалённый уголь разлагается на водяной газ (CO и H 2). При повышенной температуре в присутствии катализатора реагирует с CO и углеводородами с образованием H 2 ; вода взаимодействует с наиболее активными металлами с образованием H 2 и соответствующего гидроксида. При взаимодействии воды со многими оксидами образуются кислоты или основания. С солями образует кристаллогидраты, со многими газами при низких температурах (инертные газы, углеводороды) – соединения включения, газовые гидраты. Присоединение воды к молекулам непредельных углеводородов лежит в основе промышленного способа получения спиртов, альдегидов и кетонов.

4.2. Физические свойства воды

Вода обладает рядом аномальных физических свойств.

· Вода – единственное вещество на Земле, способное существовать одновременно
в трёх состояниях: твёрдом, жидком и газообразном.

· При таянии льда его плотность уменьшается, при замерзании вода расширяется. Другие вещества при замерзании наоборот уменьшаются.

· Высокая температура и удельная теплота плавления 0 °C и 333,55 кДж/кг, температура кипения 100 °C и удельная теплота парообразования 2250 кДж/кг.

· Вода обладает высокой теплоёмкостью. Теплоёмкость воды в 10 раз больше теплоёмкости стали и в 30 раз больше теплоёмкости ртути.

· Вода обладает низкой вязкостью.

· Вода имеет высокое поверхностное натяжение. Ни одно вещество не имеет такого сильного поверхностного натяжения.

· Отрицательный электрический потенциал поверхности воды.

Все эти аномальные особенности воды связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Определенную роль играет протонное обменное взаимодействие между молекулами и внутри молекул воды.

При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4 °C этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость.

Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода,
а отрицательно заряженные – атомы водорода. Поскольку молекула воды мала
по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Вода проводит электричество. По электропроводности воды можно определить её чистоту.

При нормальном атмосферном давлении (760 мм рт. ст., 101 325 Па), вода (лёд) тает (плавится) при температуре в 0 °C и кипит (превращается в водяной пар) при температуре 100 °C (температура 0 °C и 100 °C были специально выбраны как температура таяния и кипения воды при создании температурной шкалы "по Цельсию"). При снижении давления температура таяния (плавления) воды медленно растёт,
а температура кипения падает. При давлении в 611,73 Па (около 0,006 атм.) температура кипения и плавления совпадает и становится равной 0,01 °C. Такое давление и температура называются тройной точкой воды. При более низком давлении вода
не может находиться в жидком состоянии, и лёд превращается непосредственно в пар.

При росте давления температура кипения воды растёт, плотность водяного пара
в точке кипения тоже растёт, а жидкой воды – падает. При температуре 374 °C (647 K) и давлении 22,064 МПа (218 атм.) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают. При более высоком давлении нет разницы между жидкой водой и водяным паром, следовательно, нет и кипения или испарения.

Вода сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60% парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.

В периодической системе элементов Д.И. Менделеева кислород образует отдельную подгруппу. Она так и называется: подгруппа кислорода.

Входящие в нее кислород, сера, селен и теллур имеют много общего в физических и химических свойствах. Общность свойств прослеживается, как правило, и для однотипных соединений, образованных членами подгруппы. Однако для воды характерно отклонение от правил.

Из самых легких соединений подгруппы кислорода (а ими являются гидриды) вода – легчайшее. Физические характеристики гидридов, как и других типов химических соединений, определяются положением в таблице элементов соответствующей подгруппы. Так, чем легче элемент подгруппы, тем выше летучесть его гидрида. Поэтому в подгруппе кислорода самой высокой должна быть летучесть воды – гидрида кислорода.

Это же свойство очень явственно проявляется и в способности воды «прилипать» ко многим предметам, то есть смачивать их. При изучении этого явления установили, что все вещества, которые легко смачиваются водой (глина, песок, стекло, бумага и др.), непременно имеют в своем составе атомы кислорода. Для объяснения природы смачивания этот факт оказался ключевым: энергетически неуравновешенные молекулы поверхностного слоя воды получают возможность образовывать дополнительные водородные связи с «посторонними» атомами кислорода. Благодаря поверхностному натяжению и способности к смачиванию, вода может подниматься в узких вертикальных каналах на высоту большую чем та, которая допускается силой тяжести, то есть вода обладает свойством капиллярности.

Капиллярность играет важную роль во многих природных процессах, происходящих на Земле. Благодаря этому вода смачивает толщу почвы, лежащую значительно выше зеркала грунтовых вод и доставляет корням растений растворы питательных веществ. Капиллярностью обусловлено движение крови и тканевых жидкостей в живых организмах.

Самыми высокими оказываются у воды как раз те характеристики, которые должны были бы быть самыми низкими: температуры кипения и замерзания, теплоты парообразования и плавления.

Температуры кипения и замерзания гидридов элементов кислородной подгруппы графически представлены на рис. 1.7. У самого тяжелого из гидридов H 2 Te они отрицательны: выше 0°С это соединение газообразно. По мере перехода к гидридам более легким (H 2 Se, H 2 S) температуры кипения и замерзания все более снижаются. Сохранись и далее эта закономерность, можно было бы ожидать, что вода должна кипеть при -70°С и замерзать при -90°C. В таком случае в земных условиях она никогда
не могла бы существовать ни в твердом, ни в жидком состояниях. Единственно возможным было бы газообразное (парообразное) состояние. Но на графике зависимости температуры неожиданно резкий подъем – температура кипения воды +100°С, замерзания – 0°C. Это наглядное преимущество ассоциативности – широкий температурный интервал существования, возможность осуществить все фазовые состояния в условиях нашей планеты. Ассоциативность воды сказывается и на очень высокой удельной теплоте ее парообразования. Чтобы испарить воду, уже нагретую
до 100°С, требуется вшестеро больше количества теплоты, чем для нагрева этой же массы воды на 80°С (от 20 до 100°С).

Кипение заключается в том, что пузыри пара образуются внутри кипящей жидкости. При нормальном давлении чистая вода кипит при 100 "С. В случае подведения тепла через свободную поверхность будет ускоряться процесс поверхностного испарения, но объёмного парообразования, характерного для кипения, не возникает. Кипение может быть осуществлено и понижением внешнего давления, так как в этом случае давление пара, равное внешнему давлению, достигается при более низкой температуре. На вершине очень высокой горы давление и соответственно точка кипения настолько понижаются, что вода становится непригодной для варки пищи - не достигается требуемая температуры воды. При достаточно высоком давлении воду можно нагреть настолько, что в ней может расплавиться свинец (327 °С), и все же она не будет кипеть.

Помимо сверхбольших температур кипения плавления (причем последний процесс требует слишком большой для такой простой жидкости теплоты плавления), аномален сам диапазон существования воды - сто градусов, на которые разнятся эти температуры, - довольно большой диапазон для такой низкомолекулярной жидкости, как вода. Необычайно велики пределы допустимых значении переохлаждения и перегрева воды - при аккуратном нагревании или охлаждении вода остается жидкой от -40 °C до +200 °C. Тем самым температурный диапазон, в котором вода может оставаться жидкой, расширяется до 240 °C.

Каждую минуту миллион тонн воды гидросферы испаряется от солнечного нагрева. В результате в атмосферу постоянно поступает колоссальное количество теплоты, эквивалентное тому, которое бы вырабатывали 40 тысяч электростанций мощностью 1 млрд. киловатт каждая.

При плавлении льда немало энергии уходит на преодоление ассоциативных связей ледяных кристаллов, хотя и вшестеро меньше, чем при испарении воды. Молекулы Н 2 O фактически остаются в той же среде, меняется лишь фазовое состояние воды.

Удельная теплота плавления льда более высокая, чем у многих веществ, она эквивалентна расходу количества теплоты при нагреве 1 г воды на 80°С (от 20 до 100°С).

При замерзании воды соответствующее количество теплоты поступает
в окружающую среду, при таянии льда поглощается. Поэтому ледяные массы,
в отличие от масс парообразной воды, являются своего рода поглотителями тепла в среде с плюсовой температурой.

Аномально высокие значения удельной теплоты парообразования воды и удельной теплоты плавления льда используются человеком в производственной деятельности. Знание природных особенностей этих физических характеристик иногда подсказывает смелые и эффективные технические решения. Так, воду широко применяют
в производстве как удобный и доступный охладитель в самых разнообразных технологических процессах. После использования воду можно возвратить в природный водоем и заменить свежей порцией, а можно снова направить на производство, предварительно охладив в специальных устройствах – градирнях.

На многих металлургических производствах Донбасса в качестве охладителя используют не холодную воду, а кипяток. Охлаждение идет за счет использования теплоты парообразования – эффективность процесса повышается в несколько раз, к тому же отпадает надобность в сооружении громоздких градирен. Конечно, кипяток-охладитель используют там, где нужно охладить объекты, нагретые выше 100°C. А вот пример совсем из другой области человеческой деятельности – сельского хозяйства, садоводства. Когда поздней весной внезапные ночные заморозки угрожают цветущим плодовым деревьям, опытные садоводы находят выход, кажущийся совершенно неожиданным: они проводят дождевание сада. Пелена мельчайших водных брызг окутывает замерзающие деревья. Капельки воды покрывают лепестки цветов. Превращаясь в лед, вода надевает на цветы ледяную шубу, отдавая при этом им свое тепло (335 Дж от 1 г замерзающей воды).

Широкое применение воды в качестве охладителя объясняется не только и не столько ее доступностью и дешевизной. Настоящую причину нужно тоже искать в ее физических особенностях. Оказывается, вода обладает еще одной замечательной способностью – высокой теплоемкостью. Поглощая огромное количество теплоты, сама вода существенно не нагревается. Удельная теплоемкость воды в пять раз выше, чем у песка, и почти в десять раз выше, чем у железа.

Способность воды накапливать большие запасы тепловой энергии позволяет сглаживать резкие температурные колебания на земной поверхности в различные времена года и в разное время суток. Благодаря этому вода является основным регулятором теплового режима нашей планеты.

Интересно, что теплоемкость воды аномальна не только по своему значению. Удельная теплоемкость разная при различных температурах, причем характер температурного изменения удельной теплоемкости своеобразен: она снижается по мере увеличения температуры в интервале от 0 до 37°С, а при дальнейшем увеличении температуры – возрастает. Минимальное значение удельной теплоемкости воды обнаружено при температуре 36,79°С, а ведь это нормальная температура человеческого тела! Нормальная температура почти всех теплокровных живых организмов также находится вблизи этой точки.

Оказалось, что при этой температуре осуществляются и микрофазовые превращения в системе «жидкость – кристалл», то есть «вода – лед». Установлено, что при изменении температуры от 0 до 100°С вода последовательно проходит пять таких превращений. Назвали их микрофазовыми, так как протяженность кристаллов микроскопична, не более 0,2...0,3 нм. Температурные границы переходов – 0, 15, 30, 45, 60 и 100°С.

Температурная область жизни теплокровных животных находится в границах третьей фазы (30...45°С). Другие виды организмов приспособились к иным температурным интервалам. Например, рыбы, насекомые, почвенные бактерии размножаются при температурах, близких к середине второй фазы (23...25°С), эффективная температура весеннего пробуждения семян приходится на середину первой фазы (5...10°С).

Характерно, что явление прохождения удельной теплоемкости воды через минимум при температурном изменении обладает своеобразной симметрией: при отрицательных температурах также обнаружен минимум этой характеристики. Он приходится на -20°С.

Если вода ниже 0°С сохраняет не замерзшее состояние, например, будучи мелкодисперсной, то около -20°С резко увеличивается ее теплоемкость. Это установили американские ученые, исследуя свойство водных эмульсий, образованных капельками воды диаметром около 5 микрон.

Углублённое изучение физического смысла и направлений практического применения данного явления еще ждут своих исследователей. Но уже и теперь ясно, что эти открытия представляют очень интересный и ценный познавательный материал.

Теплоемкость воды. Количество тепла, необходимого для нагревания 1 г воды на 1°, достаточно, чтобы нагреть на 1° 9,25 г железа, 10,3 г меди. Аномально высокая теплоемкость воды превращает моря и океаны в гигантский термостат, сглаживающий суточные колебания температуры воздуха. Причем не только большие массы воды, как моря, способы сглаживать эти колебания, но и обычный водяной пар атмосферы. Резкие суточные колебания температуры в районах великих пустынь связаны с отсутствием водяного пара в воздухе. Сухой воздух пустыни почти лишен водяного пара, который мог бы сдержать быстрое ночное охлаждение накалившегося за день песка, поэтому температура воздуха может оказаться не больше 5 °C.

Теплоёмкостью воды объясняется явление различного нагревания воды и суши: так как теплоёмкость твёрдых пород, составляющих поверхность суши, и теплоёмкость воды резко отличаются, то для нагревания до одной и той же температуры воды и песка потребуется различное количество тепла, поэтому днём температура песка выше, чем воды. Вода охлаждается медленнее, чем твёрдые породы, поэтому ночью песок холоднее, чем вода. Как известно, нагревание воздуха происходит не непосредственно лучами солнца, а путём отдачи тепла от нагреваемой поверхности суши и воды. В летнее время создаётся значительная разница температур между поверхностью суши и воды, в силу чего происходит перемещение воздуха в направлении, определяемом разницей температур воды морей и океанов и прилегающей к ним суши.

Теплоемкость воды (1 кал), кстати, в 2 раза больше теплоемкости льда (0,5 кал), а для всех других веществ плавление почти не сказывается на этой величине.

Почему в случае воды эта величина демонстрирует столь большое значение? Удельная теплоемкость – это количество тепла, которое надо сообщить одному грамму вещества, чтобы увеличить его температуру на один градус Цельсия. Следовательно, вода требует для своего нагревания аномально большое количество тепла. Так как возрастание температуры означает увеличение средней скорости движения молекул, то на молекулярном языке большая теплоемкость воды означает, что ее молекулы очень инертны. Чтобы увеличить среднюю скорость молекул H 2 O, им нужно почему-то сообщить довольно много энергии, хотя сами молекулы по молекулярным масштабам сравнительно невелики. Все объясняется существованием водородных связей. Так как большая часть молекул связана в довольно большие комплексы, то отдельная "среднестатистическая" молекула H 2 O может увеличить свою кинетическую энергию одним из двух способов. Она может, во-первых, освободившись от всех своих водородных связей, начать двигаться самостоятельно. И во-вторых, ускорение всего комплекса молекул приведет, разумеется, к увеличению скорости каждой молекулы H 2 O, входящей в этот комплекс. Очевидно, что оба эти способа требуют значительных энергетических затрат, что и приводит к большому значению удельной теплоемкости воды.

5. Память воды

5.1. Вода, которую мы не знали

Молекула воды – кристалл (структурированный).

Наука физика учит: вода не образует долгоживущих структур (если только в дело не вмешивается постороннее вещество). Конечно, существует водородная связь, за счёт которой молекулы воды могут соединяться в цепочки, но такие образования живут ничтожно малое время – 10 -16 секунд. В теории это означает, что невозможно структурировать воду.

Однако вот уже несколько лет исследователи изучают способность воды организовывать долгоживущие структуры.

В 2003 году была защищена диссертация на тему памяти воды. Автор – Станислав Зенин. С.В. Зениным на основании данных, полученных тремя физико-химическими методами, построена и доказана геометрическая модель основного стабильного структурного образования из молекул воды (структурированная вода), а затем получено изображение этих структур с помощью контрастно-фазового микроскопа. Структурной единицей такой воды является кластер, состоящий из клартатов – устойчивых (со сроком жизни до нескольких часов) соединений из 912 молекул воды размером от полумикрона до микрона.

В дистиллированной воде клартаты практически электронейтральны. Однако их электропроводность можно изменить. Если помешать магнитной мешалкой, связи между элементами клартатов будут разрушены и вода превратится в мёртвое, неупорядоченное месиво. Если поместить в воду предельно малое количество другого вещества (хоть одну молекулу) клартаты начнут «перенимать» его электромагнитные свойства.

В структуре кластеров закодирована информация о взаимодействиях, имевших место с данными молекулами воды. Они как губка впитывают в себя всю информацию, которая происходит в окружающем пространстве. Зенин дал определение воды как вещества в информационно-фазовом состоянии, обладающего структурной, пригодной для хранения данных, биологического накопителя информации. При этом он выделил два типа «памяти» воды – первичную и долговременную. Первичная память воды появляется после однократного воздействия и представляет обратимое изменение её структуры и отображение на поверхности клартатов нового электромагнитного рисунка. Долговременная память воды – полное преобразование структуры элемента, вследствие длительного информационного воздействия. То есть, чтобы сформировать определённую структуру воды, достаточно в течение определённого времени передавать воде определённую эмоцию.

Чем выше в воде содержание кластеров, чем более упорядоченная её структура, тем более она способна сама себя воспроизводить, что и наблюдается в живых системах. Это свидетельствует о том, что вода организма человека может выполнять системообразующую роль, с одной стороны, и регуляторную роль – с другой. В этом отношении интересной является концепция двухкомпонентной системы восстановления повреждённых тканей, где алгоритм восстановления реализуется на уровне структурированной воды.

Автор флуктуационного метода очистки воды Ф.Р.Черников также считает, что вода хранит информацию вследствие того, что в структурно-динамических параметрах водной среды (обладающих специфической биологической активностью) остаётся информация о предшествующих воздействиях, включая воздействия самих водоочистительных процессов. Очищенной водой может считаться вода с высоким уровнем структурно-динамических параметров (по типу «талой воды»).

5.2. Роль воды, входящей в состав биологических жидкостей

Роль воды, входящей в состав биологических жидкостей (кровь, лимфа и др.), ещё мало освещена в современной литературе, но её значение, как информационного фактора, чрезвычайно велико и требует дальнейшего осмысления.

Последовательность процесса структурирования биогенной воды была предложена К.М.Резниковым в 2001 году. Эти данные раскрывают процессы передачи информации
в живых системах и возможности использования их в лечебных и диагностических целях. При этом понятие «информация» рассматривается как мера организованности движения (взаимодействия и перемещения) частиц в системе.

Если под влиянием какого-либо внешнего фактора (микроорганизм, токсин, электромагнитное излучение и др.) меняются информационные свойства воды,
то изменяются и структурно-функциональные компоненты клеток, тканей и органов.
По мнению автора предложенной модели К.М.Резникова изменения информационных возможностей структурированной воды могут быть наиболее ранними признаками возможности возникновения патологических явлений.

5.3 Исследования Масару Эмото

Доказательства информационных свойств воды показывает японский исследователь Масару Эмото. Он установил, что никакие два образца воды не образуют полностью одинаковых кристаллов при замерзании, и что их форма отражает свойства воды, несёт информацию о воздействии, оказанном на воду. Микрокристаллы изучают по фотографиям. Сначала капельки воды, помещённые в чашки Петри, резко охлаждают в течение двух часов, а затем помещают в специальный прибор – холодильную камеру, совмещённую с микроскопом и фотоаппаратом – где при температуре минус пять градусов рассматривают получившиеся кристаллы и снимают наиболее характерные. При этом изучаются образцы из различных водных источников мира, также вода, подвергнутая различным видам воздействия (музыка, изображение, излучение телевизора, мысли одного человека и группы людей). Доктор Эмото обнаружил,
что имеется существенная разница между кристаллами воды, прослушавшей «пастораль» Бетховена и песню в стиле «хеви-металл», между образцами, которые говорили «спасибо» и «меня от тебя тошнит», а слова «ангел» и «дьявол» образуют структуры, одновременно похожие и совершенно противоположные.

Кристаллы, образовавшиеся из только что полученной дистиллированной воды, имеют простую форму хорошо известных шестиугольных снежинок. Накопление информации меняет их строение, усложняя, повышая их красоту, если информация положительная. Или, напротив, искажая или даже нарушая первоначальные формы, если информация негативная.

Воду превращают в структурную с помощью особых аквадисков, нанотехнологиями, ультразвуком и даже музыкой. В православной церкви воду освящают, делая ее «святой». Список подобного рода попыток превратить обычную воду в «чудотворную» очень внушителен. Немецкая компания «Энерджетикс», производящая оборудование для популярной в альтернативной медицине магнитной терапии, начала недавно выпуск магнитов, которые при помещении в стакан воды «структурируют» обычную воду и делают её более полезной.

5.4. Перспективы использования структурированной воды

Безусловно, и доктора Эмото можно причислить к фантазёрам, которые используют сложную технику не по назначению. Японский учёный считает, что в основе всего сущего лежит единая вибрационная частота, волна резонанса (в его терминологии – ХАДО), и эта волна способна переносить эмоции людей на все окружающие их предметы. Поэтому, считает Эмото, надо благодарить еду, которую ешь, пресекать отрицательные эмоции и чаще молиться. Такие выводы способны лишь насмешить серьёзную научную общественность. Но соотечественники учёного демонстрируют утилитарный интерес к его работе: одни разработчики ищут способы преобразовывать процессы, происходящие в воде под воздействием электромагнитного излучения человеческого мозга, в понятные компьютеру сигналы. То есть подумывают об ЭВМ, которой можно управлять силой мысли. Другие хотят научить воду хранить двоичный код. Третьи интересуются, можно ли менять физико-химические параметры воды для специальных целей (например, делать её более вязкой, чтобы с меньшими энергозатратами охлаждать атомные реакторы.).

Такое положение вещей может однажды привести к тому, что как раз в тот момент, когда теоретическая наука перестанет сомневаться в праве воды на память, учёные создадут «водяные» компьютеры на телепатическом управлении.

Информационные свойства воды могут также широко использоваться в медицине. Так как вода может передавать информацию в живых организмах, её можно использовать в лечебных и диагностических целях.

При помощи структурированной воды можно выращивать высококачественные продукты и многое другое.

Заключение

Итак, вода не просто H 2 O. Она – смесь различного сочетания изотопов водорода
с изотопами кислорода. Число возможных сочетаний довольно велико – 42, из них более или менее изучены 2, остаётся ещё 40. И даже при самом смелом полёте фантазии невозможно предсказать, какие самые неожиданные свойства раскроет нам та или иная модификация воды.

Ясно, что по мере познания структуры воды, применяя всё более совершенные методы теоретического анализа, используя ЭВМ, учёные смогут предсказать если и не все, то весьма многие свойства этих оставшихся 40 сочетаний.

Одной или нескольким разновидностям воды, которые будут открыты в будущем, предстоит сыграть решающую роль в раскрытии таких биологических проблем как наследственность, деятельность мозга, излечение от недугов, долголетие...

Следует заметить, что за последние годы знания о структуре и свойствах воды и её растворах значительно обогатились благодаря использованию новейших поколений счётно-решающих систем и компьютерной техники.

Сейчас особенно отчётливо видно, каким трудным и сложным объектом для исследователей оказалась вода.

Исследование воды, важнейшего природного соединения, заметно продвинулось вперёд благодаря усилиям химиков, физиков, биологов, геологов, медиков и других специалистов. Удалось собрать интереснейшую информацию о её составе, свойствах, структуре, учёные приоткрыли занавес и даже заглянули в мир атомов и молекул, которые формируют необычную ажурную структуру воды.

Многое известно о воде, но ещё больше предстоит узнать. В 1934 году академик
Н.Д. Зелинский писал: «если в столь простом веществе, как вода, наукой не всё было открыто, то как много ещё остаётся неясного и точно неисследованного во всём окружающем нас материальном мире, в эволюционном процессе которого появился
и человек». Эти слова Н.Д. Зелинского и сейчас не потеряли своей актуальности.
Их современность и программная целенаправленность неоспоримы. Пусть они станут путеводной звездой для тех, кто только делает первые шаги на благодатной
и неисчерпаемой ниве научных поисков, кто пытается раскрыть сложное сплетение природных явлений и понять облик окружающего нас мира, физическая и биологическая структура которого во многом предопределена необычным строением воды.

Вода (оксид водорода) – простейшее устойчивое соединение водорода с кислородом. Молекулярная масса воды 18,0160. На водород приходится 11,19% по массе, а на кислород – 88,81%. В природе существует три изотопа водорода – легкий водород Н 1 , дейтерий D (Н 2) и тритий (Н 3) и три изотопа кислорода –О 16 , О 17 , О 18 . Искусственно получены еще два изотопа водорода и шесть изотопов кислорода. Теоретически пять изотопов водорода и девять изотопов кислорода могут образовать 135 разновидностей молекул воды, из которых устойчивыми являются девять, включая стабильные изотопы. В природной воде на долю Н 1/2 О 16 приходится 99,75% по массе, на долю Н 1/2 О 18 – 0,2%, на Н 1/2 О 17 – 0,04% и на Н 1 Н 2 О 16 – примерно 0,093% . остальные пять разновидностей присутствуют в ничтожных количествах.

Молекула воды имеет угловое строение. Ядра атомов образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине -–ядро атома кислорода. Межъядерное расстояние О-Н близко к 0,1 нм, а расстояние между ядрами атомов водорода равно примерно 0,15 нм. Структурная формула воды имеет вид:

Восемь электронов внешнего электронного слоя атома кислорода образуют четыре электронные пары, две из которых создают ковалентные связи О-Н, а две другие представляют собой неподеленные электронные пары. Вследствие смещения электронов, образующих связи О-Н, к атому кислорода атомы водорода приобретают эффективные положительные заряды. Неподеленные электронные пары также смещены относительно ядра атома кислорода и создают два отрицательных полюса.

Измерения молекулярной массы жидкой воды (18,016) показали, что она выше молекулярной массы воды в парообразном состоянии; это свидетельствует об ассоциации молекул – объединении их в сложные агрегаты. Это явление подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды обусловлена образованием водородных связей. В твердом состоянии атом кислорода каждой молекулы воды образуют две водородные связи с соседними молекулами.

Чистая природная вода - жидкость без запаха, вкуса и цвета. По сравнению с другими химическими соединениями вода обнаруживает необычные отклонения по ряду физических свойств – плотности, удельной теплоемкости, вязкости и др.

При нагревании воды происходит разрыв водородных связей и уменьшается степень ассоциации молекул воды. Большое значение имеет и тот факт, что вода обладает аномально высокой теплоемкостью – 4,18 ДЖ/(г*К). Высокая теплоемкость воды есть следствие расхода части теплоты на разрыв водородных связей. В природных условиях вода медленно остывает и медленно нагревается, являясь регулятором температуры на Земле.

Температура кипения воды находится в прямой зависимости от давления – чем оно выше, тем выше температура кипения.

Вязкость (способность жидкости оказывать сопротивление различным формам движения) воды закономерно изменяется в зависимости от температуры: уменьшается с ее возрастанием. С повышением концентрации растворенных в воде солей вязкость воды увеличивается. В тоже время действие давления на вязкость воды довольно специфично: с понижением температуры при умеренном давлении вязкость снижается.

Поверхностное натяжение воды с увеличением температуры уменьшается. Такое поверхностное натяжение обеспечивает подъем уровня воды в капиллярной трубке диаметром 0,1 мм на 15 см при t=18 о С. При добавлении солей поверхностное натяжение воды возрастает, но незначительно.

Вследствие асимметрического строения молекула воды обладает резко выраженным дипольным характером, т.е. в молекуле не совпадают центры тяжести положительных и отрицательных зарядов. Дипольный характер молекул воды способствует образованию так называемых продуктов присоединения: к молекулам воды присоединяются молекулы веществ ионного строения или же не ионного, но с выраженным дипольным характером.

Относительная диэлектрическая постоянная воды равна 80 – это очень высокая величина, чем и объясняется такая большая ионизирующая сила воды.

Оптические свойства воды оцениваются по ее прозрачности, которая в свою очередь зависит от длины волны луча, проходящего через воду.

Вода - термически устойчивое вещество. Она выдерживает нагревание до температуры 1000 о С и лишь при температуре выше 1000 о С частично разлагается на водород и кислород. Термическое разложение (диссоциация) воды протекает с поглощением теплоты, а согласно принципу Ле Шателье, чем выше температура, тем больше степень диссоциации.

Вода – весьма реакционно способное вещество. Она реагирует с оксидами многих металлов (Na 2 O, CaO и др.) и неметаллов (Cl 2 O, CO 2 и др.), образуя кристаллогидраты с некоторыми солями , вступает во взаимодействие с активными металлами (Na,K и др).

Вода - катализатор многих химических реакций, и иногда для прохождения реакции необходимо хотя бы ее следы.

Обладая дипольным характером, вода является растворителем. Раствором называется твердая или жидкая гомогенная система, состоящая из двух или более компонентов. Наиболее распространенными являются жидкие растворы, когда одним из компонентов системы является жидкость, а из всех жидких растворов первостепенное значение имеют водные растворы. Энергия образования молекул воды высока, она составляет 242кДж/моль. Этим объясняется устойчивость воды в природных условиях. Устойчивость в сочетании с электрическими характеристиками и молекулярным строением делают воду практически универсальным растворителем для многих веществ.

Химически чистая вода очень плохо проводит электрический ток, но все же обладает некоторой электропроводностью, так как она способна в очень незначительной степени диссоциировать на ионы водорода и гидоксил-ионы: Н 2 О  Н + + ОН -

Так как скорость химической реакции прямо пропорциональна действующим массам, т.е. концентрациям реагирующих веществ, поэтому можно написать:

V 1 = k 1 иv 2 = k 2 *

Для воды и разбавленных растворов при неизменной температуре произведение концентраций ионов водорода и гидроксил-ионов есть величина постоянная. Растворы, в которых концентрация ионов водорода и гидоксил-ионов одинаковы, называются нейтральными растворами. Если в растворе > и, следовательно, > моль/л, то такой раствор называется кислым, а если < моль/л, то раствор называется щелочным. Большинство химических элементов образует более растворимые соединения в кислых средах и менее растворимые в нейтральных. Некоторые элементы образуют легкорастворимые соединения в щелочных растворах. Так, двухвалентное железо может находиться в растворе в менее кислых водах, чем трехвалентное. Гидроксиды магния выпадают из раствора только в сильнощелочных водах. Важной характеристикой миграционной способности элементов является «рН начала выпадения гидроксида». То есть та величина рН раствора, при которой из раствора начинается выпадение гидроксида данного элемента. Эта величина зависит как от свойств самого элемента, так и от условий внешней среды. Например, для большинства элементов с повышением температуры рН осаждения гидроксида повышается. Поэтому в ландшафтах жаркого климата миграционная способность элементов в водной среде может быть более высокой, чем в условиях низких температур.

Среди аномальных свойств воды, играющих важную роль в поддержании жизни на нашей планете, следует отметить:

    Аномальный вид температурной зависимости плотности воды. Максимум плотности воды наблюдается при температуре около 4 о С. Благодаря этому с наступлением морозов поверхностный слой воды охлаждается до 4 о С и как более тяжелый опускается на дно водоема, вытесняя более теплые и легкие слои на поверхность. В дальнейшем, когда весь водоем охладится до 4 о С, будет охлаждаться только поверхностный слой, который, как более легкий, будет оставаться на поверхности водоема. Лед и покрывающие его снег являются хорошей защитой водоема от промерзания, так как обладают малой теплопроводностью (теплопроводность снега при плотности 0,1 г/см 3 соответствует теплопроводности шерсти, а при плотности 0,2 г/см 3 – теплопроводности бумаги). Все это в целом способствует сохранению жизни в водоемах в зимнее время.

    Теплоемкость воды . Величина теплоемкости воды выше, чем у всех твердых и жидких веществ, за исключением жидкого аммиака и водорода. Благодаря огромной теплоемкости, океаны сглаживают колебания температуры, и перепад температур от экватора до полюса составляет всего 30 о С.

    Теплота плавления . Значение теплоты плавления воды, равное 6,012 кДж/моль, является наиболее высоким среди твердых и жидких тел, за исключением аммиака и водорода. Благодаря высокой теплоте плавления, на Земле сглаживаются сезонные переходы: весну и осень можно рассматривать как фазовый переход воды. Сравнительно легко нагреваясь или охлаждаясь до 0 о С, вода, снег и лед для перехода в другое фазовое состояние требуют значительных расходов энергии. Поэтому эти переходы обычно растягиваются во времени. Следует отметить, например, что при замерзании 1 м 3 воды выделяется столько же тепла, сколько при сжигании примерно 10 кг угля.

    Теплота испарения . Наибольшее значение теплоты испарения приводит к тому, что большая часть солнечной энергии, достигающей Земли, расходуется на испарение воды, препятствуя перегреву ее поверхности. При конденсации паров воды в атмосфере происходит выделение этой энергии, которая может переходить в кинетическую энергию воздуха, вызывая ураганные ветры.

    Поверхностное натяжение . Максимальное, за исключением ртути, поверхностное натяжение воды приводит к появлению ряби и волн на водной поверхности уже при слабом ветре. В результате этого резко возрастает площадь водной поверхности и интенсифицируются процессы теплопередачи между атмосферой и гидросферой. С высоким поверхностным натяжение воды связаны и капиллярные силы, благодаря действию которых вода способна подниматься на высоту до 10-12 метров от уровня грунтовых вод.

    Диэлектрическая постоянная . Диэлектрическая постоянная имеет аномально высокое значение. Это определяет самую большую растворяющую способность воды по отношению к веществам с полярной и ионной структурой. Поэтому в природе нет химически чистой воды. Мы всегда имеем дело с ее растворами.

Вода как растворитель имеет громадное значение и в промышленности, и в быту. Трудно найти какое-нибудь производство, в котором вода не использовалась бы как растворитель. Возьмём, например, производство сахара. Горячая вода извлекает из тонких стружек сахарной свёклы сахар; затем после очистки раствор упаривается, и из него выделяются кристаллы сахара. Без воды работа сахарного завода немыслима. Невозможно себе представить выделку кожи, травление и крашение различных тканей, мыловарение и множество других производств без использования водных растворов различных веществ.

Вода как растворитель представляет особенно большой интерес для химии.

Химики очень часто применяют воду для очистки получаемых ими продуктов. Эта очистка основана на том, что большинство веществ растворяется в горячей воде лучше, чем в холодной. Так, например, в 100 граммах воды при температуре в 100 градусов растворяется 342 грамма едкого натрия, а при 20 градусах 109 граммов, при 100 градусах в том же количестве воды растворяется 291 грамм борной кислоты, а при 20 градусах около 40 граммов. Желая получить чистое вещество, поступают так. Загрязнённое вещество растворяют в воде до тех пор, пока не получится насыщенный раствор, т. е. такой, в котором вещество больше уже не растворяется. Затем фильтрованием удаляют нерастворимые примеси и охлаждают жидкость. При этом образуется пересыщенный раствор, из которого по мере понижения температуры выпадает всё больше и больше чистых кристаллов вещества. Растворимые же примеси остаются в растворе. Растворение и кристаллизацию повторяют несколько раз, в зависимости от того, насколько чистый продукт надо получить. Если растворимость изменяется с повышением температуры незначительно (как, например, у поваренной соли: при 100 градусах в 100 граммах воды растворяется 39,1 грамма соли, а при нуле градусов 35,6 грамма), растворы упаривают. Так получают, например, выварочную соль.

Однако вода ценна не только как средство для очистки веществ. Очень часто она играет незаменимую роль как единственно возможная среда для протекания тех или иных химических процессов.

Одним из условий возникновения реакции является столкновение участвующих в ней молекул. В случае, если взаимодействуют газообразные вещества или жидкости, такое столкновение осуществляется легко: молекулы газов и жидкостей достаточно подвижны. Но как провести реакцию между твёрдыми веществами? Ведь в них движение молекул весьма стеснено, так как каждая из молекул закреплена в определённом месте кристалла, где она может только колебаться. Вы можете насыпать в стакан немного соли и лимонной или щавелевой кислоты, но реакции между ними не дождётесь: эта смесь может простоять без всяких изменений сколь угодно долго. Как же быть? Здесь на помощь снова приходит вода. Прибавьте в тот же стакан воды. Сода и кислота растворятся в воде, и мельчайшие частички их получат возможность сталкиваться друг с другом. Между ними моментально начнётся химическая реакция, которую легко заметить по выделению из раствора пузырьков одного из продуктов реакции - углекислого газа.

Известно, что очень крепкую серную кислоту можно свободно перевозить в стальных цистернах - корпус цистерны ею не разрушается. Но если серная кислота разбавлена водой, стальные цистерны использовать уже нельзя, так как водный раствор серной кислоты легко разъедает железо.

Вещества не взаимодействуют друг с другом, если они не растворены, - гласит старинное правило химиков.

Вода отличается ещё одним важным свойством: она сама способна соединяться с очень многими веществами, быть активным участником различных химических процессов.

Вода способна соединяться с простыми веществами как металлами, так и неметаллами.

Например, неметалл хлор даёт с водой смесь кислот: соляную и хлорноватистую. Если хлор пропускать через воду, к которой прибавлен едкий натр, то в результате реакции получается «жавелевая вода», хорошее белящее средство.

С натрием, калием и некоторыми другими металлами вода бурно взаимодействует. При этом получаются едкие щёлочи и выделяется газ водород.

Вода вступает в реакции и со многими сложными веществами. Мы здесь укажем только несколько примеров этих реакций, приводящих к образованию очень важных в химической промышленности веществ - оснований (или гидроокисей) и кислот.

Самое важное, уникальное по свойствам и составу вещество нашей планеты - это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара - она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины - гидрологии.

Количество воды на планете

Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

  1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
  2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
  3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
  4. Подземные воды составляют 100 млн м 3 .

Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

Состав воды и строение молекулы

Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н 2 О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра - атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды - диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

Основные физические свойства

К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

  1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым - лед, жидким - основная вода при обычных условиях, газообразным - пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
  2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
  3. То, что по структуре оксид водорода - диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
  4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
  5. Температура кипения жидкой воды - 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя - лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
  6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных - поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
  7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение - бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, - это растворенные в ней минералы и другие компоненты.
  8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

Лед - это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

  • высокое давление - 610 Па;
  • температура 0,01 0 С.

Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

Химические свойства

Вода и ее свойства - важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

  1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
  2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
  3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими - наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
  4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
  5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
  6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO 4 *5H 2 O), а также обычные гидраты (NaOH*H 2 O и другие).
  7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
  8. Электролиз. Под действием электрического тока молекула разлагается на составные газы - водород и кислород. Один из способов получения их в лаборатории и промышленности.

С точки зрения теории Льюиса вода - это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода - источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода - источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода - это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород - газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода - это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

Гидрологический цикл воды

Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н 2 О (1 Н и 16 О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая (2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 0 С.
  2. Кипение наблюдается при 101,42 0 С.
  3. Плотность составляет 1,1059 г/см 3 .
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D 2 O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды - атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной - она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода - основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго - полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Талая вода и ее применение

Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда - сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

При замораживании воды первой фракцией превращается в лед более тяжелая часть - это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть - чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

  1. Ускорение восстановительных процессов.
  2. Укрепление иммунитета.
  3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
  4. Улучшается дыхание, состояние гортани и слизистых оболочек.
  5. Общее самочувствие человека, активность повышаются.

Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

Энергетика

Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

Структурированная вода - что это?

Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.

Похожие статьи

  • Карта сознания дэвида хокинса Результаты исследований Хокинса

    Дэвид Хокинс Путь просветления: 365 ежедневных размышлений Какое суждение лучше всего выражает жизнь, целиком посвященную духовному совершенствованию?Gloria in Excelsis Deo! «Слава в Вышних Богу!» КАЖДЫЙ ШАГ НА ПУТИ К ПРОСВЕТЛЕНИЮ не...

  • Грядет зачистка нелояльных блогеров

    В среду утром популярный сервис интернет-дневников "Живой журнал" вновь . Представители управляющей компании ресурса SUP отказались комментировать ситуацию, сказав только, что речь, возможно, идет о последствиях кибератак. В данный момент...

  • Американский проект по созданию атомной бомбы назывался

    75 лет назад немецкие ученые О. Ган и Ф. Штрассман сделали сенсационное открытие - расщепили ядро урана-235 с помощью нейтрона. Знаменитый Эрнест Резерфорд, названный «отцом» ядерной физики, не верил в возможность получения атомной...

  • Какие русские народные сказки бытовые

    1 - Про малютку-автобус, который боялся темноты Дональд Биссет Сказка о том, как мама-автобус научила своего малютку-автобуса не бояться темноты… Про малютку-автобус, который боялся темноты читать Жил-был на свете малютка-автобус. Он был...

  • Освобождение вены Рассекреченные списки бойцов 2 украинского фронта

    Образован на юго-западном направлении советско-германского фронта 20 октября 1943 г. на основании приказа Ставки ВГК № 30227 от 16.10.1943 г. путем переименования Степного фронта . В его состав были включены 4-я , 5-я и 7-я гвардейские,...

  • Черноморский флот российской федерации

    Posted By сайт on 15.08.2012 Черноморский флот – корабли черноморского флота Севастополя фотографии И не осмотреть с воды Черноморский флот России и Украины было бы не правильно. Хотя бы его небольшую часть. Да и плюс к этому — если вы...