Абсолютная погрешность измерений. Как рассчитать абсолютную погрешность измерений? Определение абсолютной и относительной погрешности прямых измерений. Понятие о погрешности измерения и погрешности приборов Что такое точность измерений в физике

ТОЧНОСТЬ ИЗМЕРЕНИЙ

ТОЧНОСТЬ ИЗМЕРЕНИЙ

Характеристика качества измерений, отражающая степень близости результатов измерений к истинному значению измеряемой величины. Чем меньше результат измерения отклоняется от истинного значения величины, т. е. чем меньше его погрешность, тем выше Т. и., независимо от того, является ли погрешность систематической, случайной или содержит ту и другую составляющие (см. ПОГРЕШНОСТИ ИЗМЕРЕНИЙ). Иногда в кач-ве количеств. оценки Т. и. указывают погрешность, однако погрешность - понятие, противоположное точности, и логичнее в качестве оценки Т. и. указывать обратную величину относит. погрешности (без учёта её знака). Напр., если относит. погрешность равна ±10-5, то равна 105.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .


Смотреть что такое "ТОЧНОСТЬ ИЗМЕРЕНИЙ" в других словарях:

    Точность измерений - Качество измерений, отражающее близость их результатов к истинному значению измеряемой величины Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений …

    точность измерений - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN accuracy of measurements …

    Помощью так называемых измерительных приборов постоянно возрастает с ростом науки (Измерения; Единицы мер абсолютные системы). Она зависит теперь не только от тщательного приготовления приборов, но еще от нахождения новых принципов измерений. Так … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    точность измерений - поверка. поверять. прибор врет. см. показывать время … Идеографический словарь русского языка

    ГОСТ Р ЕН 306-2011: Теплообменники. Измерения и точность измерений при определении мощности - Терминология ГОСТ Р ЕН 306 2011: Теплообменники. Измерения и точность измерений при определении мощности: 3.31 величина воздействия: Величина, не являющаяся предметом измерения, но способная влиять на получаемый результат. Определения термина из… … Словарь-справочник терминов нормативно-технической документации

    точность результата измерений - точность измерений Одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность. [РМГ 29 99] Тематики метрология,… … Справочник технического переводчика

    точность - 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической… … Словарь-справочник терминов нормативно-технической документации

    Средства измерений степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью… … Википедия

    точность - Степень близости результата измерений к принятому опорному значению. Примечание. Термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической… … Справочник технического переводчика

    точность средства измерений - точность Характеристика качества средства измерений, отражающая близость его погрешности к нулю. Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений. [РМГ 29 99] Тематики метрология, основные понятия Синонимы точность … Справочник технического переводчика

Книги

  • Физические основы измерений в технолог. пищевой и химической промышленности. Учебное пособие , Попов Геннадий Васильевич , Земсков Юрий Петрович , Квашнин Борис Николаевич Серия: Учебники для вузов. Специальная литература Издатель: Лань ,
  • Физические основы измерений в технологиях пищевой и химической промышленности. Учебное пособие , Попов Геннадий Васильевич , Земсков Юрий Петрович , Квашнин Борис Николаевич , В настоящем пособии изложены краткие теоретические сведения о закономерностях измерений, измерительных системах, элементах физической картины мира, а также о принципах измерений на основе… Серия: Учебники для ВУЗов. Специальная литература Издатель:

Измеряемые величины не могут быть определены абсолютно достоверно. Измерительные инструменты и системы всегда имеют некоторое допустимое отклонение и помехи, которые выражаются степенью неточности. К тому же, необходимо учитывать и особенности конкретных приборов.

В отношении неточности измерений часто используются следующие термины:

  • Погрешность - ошибка между истинным и измеренным значением
  • Точность — случайный разброс измеренных значений вокруг их среднего
  • Разрешение — наименьшая различаемая величина измеренного значения

Часто эти термины путаются. Поэтому здесь я хотел бы подробно рассмотреть вышеуказанные понятия.

Неточность измерения

Неточности измерения могут быть разделены на систематические и случайные измерительные ошибки. Систематические ошибки вызваны отклонениями при усилении и настройкой «нуля» измерительного оборудования. Случайные ошибки вызваны шумом и и/или токами.

Часто понятия погрешность и точность рассматриваются как синонимы. Однако, эти термины имеют совершенно различные значения. Погрешность показывает, насколько близко измеренное значение к его реальной величине, то есть отклонение между измеренным и фактическим значением. Точность относится к случайному разбросу измеряемых величин.

Когда мы проводим некоторое число измерений до момента стабилизации напряжения или же какого-то другого параметра, то в измеренных значениях будет наблюдаться некоторая вариация. Это вызвано тепловым шумом в измерительной цепи измерительного оборудования и измерительной установки. Ниже, на левом графике показаны эти изменения.

Определения неопределенностей. Слева — серия измерений. Справа — значения в виде гистограммы.

Гистограмма

Измеренные значения могут быть изображены в виде гистограммы, как показано справа на рисунке. Гистограмма показывает, как часто наблюдается измеренное значение. Самая высокая точка на гистограмме, это чаще всего наблюдаемое измеренное значение, в случае симметричного распределения равно среднему значению (изображено синей линии на обоих графиках). Черная линия представляет истинное значение параметра. Разница между средним измеренной величины и истинным значением и является погрешностью. Ширина гистограммы показывает разброс отдельных измерений. Этот разброс измерений называется точностью.

Используйте правильные термины

Погрешность и точность, таким образом, имеют различные значения. Поэтому вполне возможно, что измерение является очень точным, но имеющим погрешность. Или наоборот, с малой погрешностью, но не точное. В общем, измерение считается достоверным, если оно точное, и с малой погрешностью.

Погрешность

Погрешность является индикатором корректности измерения. Из-за того, что в одном измерении точность оказывает влияние на погрешность, то учитывается среднее серии измерений.

Погрешность измерительного прибора обычно задается двумя значениями: погрешностью показания и погрешностью по всей шкале. Эти две характеристики вместе определяют общую погрешность измерения. Эти значения погрешности измерения указываются в процентах или в ppm (parts per million , частей на миллион) относительно действуюшего национального стандарта. 1% соответствует 10000 ppm .

Погрешность приводится для указанных температурных диапазонов и для определенного периода времени после калибровки. Обратите внимание, что в разных диапазонах, возможны, и различные погрешности.

Погрешность показаний

Указание процентного отклонения без дополнительной спецификации также относится к показанию. Допустимые отклонения делителей напряжения, точность усиления и абсолютные отклонения при считывании и оцифровке являются причинами этой погрешности.

Неточность показаний в 5% для значения 70 В

Вольтметр, который показывает 70.00 В и имеет спецификацию «± 5% от показаний», будет обладать погрешностью в ±3.5 В (5% от 70 В). Фактическое напряжение будет лежать между 66.5 и 73.5 вольтами.

Погрешность по всей шкале

Этот тип погрешности обусловлен ошибками смещения и ошибками линейности усилителей. Для приборов, которые оцифровывают сигналы, присутствует нелинейность преобразования и погрешности АЦП. Эта характеристика относится ко всему используемому диапазону измерений.

Вольтметр может иметь характеристику «3% шкалы». Если во время измерения выбран диапазон 100 В (равный полной шкале), то погрешность составляет 3% от 100 В = 3 В независимо от измеренного напряжения. Если показание в этом диапазоне 70 В, то реальное напряжение лежит между 67 и 73 вольтами.

Погрешность 3% шкалы в диапазоне 100 В

Из приведенного выше рисунка ясно, что этот тип допустимых отклонений не зависит от показаний. При показании 0 В реальное напряжение лежит между -3 и 3 вольтами.

Погрешность шкалы в цифрах

Часто для цифровых мультиметров приводится погрешность шкалы в разрядах вместо процентного значения.

У цифрового мультиметра с 3½ разрядным дисплеем (диапазон от -1999 до 1999), в спецификации может быть указано «+ 2 цифры». Это означает, что погрешность показания 2 единицы. Например: если выбирается диапазон 20 вольт (± 19.99), то погрешность шкалы составляет ±0.02 В. На дисплее отображается значение 10.00, а фактическое значение будет между 9.98 и 10.02 вольтами.

Вычисление погрешности измерения

Спецификации допустимых отклонений показания и шкалы вместе определяют полную погрешность измерения прибора. Ниже при расчете используются те же значения, что и в приведенных выше примерах:

Точность: ±5% показания (3% шкалы)

Диапазон: 100 В

Показание: 70 В

Полная погрешность измерения вычисляется следующим образом:

В этом случае, полная погрешность ±6.5В. Истинное значение лежит между 63.5 и 76.5 вольтами. На рисунке ниже это показано графически.

Полная неточность для неточностей показания 5% и 3% шкалы для диапазона 100 В и показания 70 В

Процентная погрешность - это отношение погрешности к показанию. Для нашего случая:

Цифры

Цифровые мультиметры могут иметь спецификацию «± 2.0% показания, + 4 цифры». Это означает, что 4 цифры должны быть добавлены к 2% погрешности показания. В качестве примера снова рассмотрим 3½ разрядный цифровой индикатор. Он показывает 5.00 В для выбранного диапазона 20 В. 2% показания будет означать погрешность в 0,1 В. Добавьте к этому численную погрешность (= 0,04 В). Общая погрешность, следовательно, 0,14 В. Истинное значение должно быть в диапазоне между 4.86 и 5,14 вольтами.

Суммарная погрешность

Зачастую в расчет принимается только погрешность измерительного прибора. Но также, дополнительно следует принимать во внимание погрешности измерительных инструментов, в том случае, если они используются. Вот несколько примеров:

Увеличение погрешности при использовании пробника 1:10

Если в процессе измерений используется щуп 1:10, то необходимо учитывать не только измерительную погрешность прибора. На погрешность также влияет входной импеданс используемого прибора и сопротивление щупа, которые вместе составляют делитель напряжения.

На рисунке выше схематически показан с подключенным к нему пробником 1:1. Если мы рассмотрим этот пробник как идеальный (нет сопротивления соединения), то приложенное напряжение передается прямо на вход осциллографа. Погрешность измерения теперь определяется только допустимыми отклонениями аттенюатора, усилителя и цепями, принимающими участие в дальнейшей обработке сигнала и задается производителем прибора. (На погрешность также влияет сопротивление соединения, которое формирует внутреннее сопротивление . Оно включается в заданные допустимые отклонения).

На рисунке ниже показан тот же самый осциллограф, но теперь ко входу подключен щуп 1:10. Этот пробник имеет внутреннее сопротивление соединения и вместе со входным сопротивлением осциллографа образует делитель напряжения. Допустимое отклонение резисторов в делителе напряжения является причиной его собственной погрешности.

Пробник 1:10, подключенный к осциллографу, вносит дополнительную погрешность

Допустимое отклонение входного сопротивления осциллографа может быть найдено в его спецификации. Допустимое отклонение сопротивления соединения щупа не всегда дано. Тем не менее, погрешность системы заявляется производителем определенного осциллографического пробника для конкретного типа осциллографа. Если щуп используется с другим типом осциллографа, нежели рекомендуемый, то измерительная погрешность становится неопределенной. Этого нужно всегда стараться избегать.

Предположим, что осциллограф имеет допустимое отклонение 1.5% и используется щуп 1:10 с погрешностью в системе 2.5%. Эти две характеристики можно перемножить для получения полной погрешности показания прибора:

Здесь — полная погрешность измерительной системы, — погрешность показания прибора, — погрешность щупа, подключенного к осциллографу, подходящего типа.

Измерения с шунтирующим резистором

Часто при измерениях токов используют внешний шунтирующий резистор. Шунт имеет некоторое допустимое отклонение, которое влияет на измерение.

Заданное допустимое отклонение шунтирующего резистора влияет на погрешность показания. Для нахождения полной погрешности, допустимое отклонение шунта и погрешность показаний измерительного прибора перемножаются:

В этом примере, полная погрешность показания равна 3.53%.

Сопротивление шунта зависит от температуры. Значение сопротивления определяется для данной температуры. Температурную зависимость часто выражают в .

Для примера вычислим значение сопротивления для температуры окружающей среды . Шунт имеет характеристики: Ом (соответственно и ) и температурную зависимость .

Ток, протекающий через шунт является причиной рассеяния энергии на шунте, что приводит к росту температуры и, следовательно, к изменению значения сопротивления. Изменение значения сопротивления при протекании тока зависит от нескольких факторов. Для проведения очень точного измерения, необходимо откалибровать шунт на дрейф сопротивления и условия окружающей среды при которых проводятся измерения.

Точность

Термин точность используется для выражения случайности измерительной ошибки. Случайная природа отклонений измеряемых значений в большинстве случае имеет тепловую природу. Из-за случайной природы этого шума не возможно получить абсолютную ошибку. Точность дается только вероятностью того, что измеряемая величина лежит в некоторых пределах.

Распределение Гаусса

Тепловой шум имеет гауссово, или, как еще говорят, нормальное распределение . Оно описывается следующим выражением:

Здесь — среднее значение, показывает дисперсию и соответствует шумового сигнала. Функция дает кривую распределения вероятностей, как показано на рисунке ниже, где среднее значение и эффективная амплитуда шума .

и

В таблице указаны шансы получения значений в заданных пределах.

Как видно, вероятность того, что измеренное значение лежит в диапазоне ± равна .

Повышение точности

Точность может быть улучшена передискретизацией (изменением частоты дискретизации) или фильтрацией. Отдельные измерения усредняются, поэтому шум значительно снижается. Также снижается разброс измеренных значений. Используя передискретизацию или фильтрацию необходимо учитывать, что это может привести к снижению пропускной способности.

Разрешение

Разрешением, или, как еще говорят, разрешающей способностью измерительной системы является наименьшая различимая измеряемая величина. Определение разрешения прибора не относится к точности измерения.

Цифровые измерительные системы

Цифровая система преобразует аналоговый сигнал в цифровой эквивалент посредством аналого-цифрового преобразователя. Разница между двумя значениями, то есть разрешение, всегда равно одному биту. Или, в случае с цифровым мультиметром, это одна цифра.

Возможно также выразить разрешение через другие единицы, а не биты. В качестве примера рассмотрим , имеющий 8-битный АЦП. Чувствительность по вертикали установлена в 100 мВ/дел и число делений равно 8, полный диапазон, таким образом, равен 800 мВ . 8 бит представляются 2 8 =256 различными значениями. Разрешение в вольтах тогда равно 800 мВ / 256 = 3125 мВ .

Аналоговые измерительные системы

В случае аналогового прибора, где измеряемая величина отображается механическим способом, как в стрелочном приборе, сложно получить точное число для разрешения. Во-первых, разрешение ограничено механическим гистерезисом, причиной которого является трение механизма стрелки. С другой стороны, разрешение определяется наблюдателем, делающем свою субъективную оценку.

Страница 1

Точность измерения. Основное понятие. Критерии выбора точности измерений. Классы точности средств измерений. Примеры средств измерений разных классов точности.

Измерение – совокупность операций по применению технического средства, хранящего единицу величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей в явном или неявном виде и получение значения этой величины.

Вообще метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Усовершенствование точности измерений стимулировало развитие наук, предоставляя более достоверные и чувствительные средства исследований.

От точности средств измерения зависит эффективность выполнения различных функций: погрешности счетчиков энергии приводят к неопределенности в учете электроэнергии; погрешности весов ведут к обману покупателей или к большим объемам неучтенного товара.

Повышение точности измерений позволяет определить недостатки технологических процессов и устранить эти недостатки, что приводит к повышению качества продукции, экономии энергетических и тепловых ресурсов, сырья, материалов.

Измерения могут быть классифицированы по характеристике точности на:

Равноточные – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений и в одних и тех же условиях;

Неравноточные - ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях.

К разным видам средств измерения предъявляют специфические требования: например, лабораторные средства должны обладать повышенной точностью и чувствительностью. Высокоточными СИ являются, например, эталоны.

Эталон единицы величины – средство измерений, предназначенное для воспроизведения и хранения единицы величины, кратных или дольных ее значений с целью передачи ее размера другим средствам измерений данной величины. Эталоны являются высокоточными средствами измерений и поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передается «сверху вниз» от более точных средств измерений к менее точным «по цепочке»: первичный эталон ® вторичный эталон ® рабочий эталон 0-го разряда ® рабочий эталон 1-го разряда … ® рабочее средство измерений.

Метрологические свойства средств измерений – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками. Все метрологические свойства средств измерений можно разделить на две группы:

· Свойства, определяющие область применения СИ

· Свойства, определяющие качество измерения. К таким свойствам относятся точность, сходимость и воспроизводимость.

Наиболее широко в метрологической практике используется свойство точности измерений, которое определяется погрешностью.

Погрешность измерения – разность между результатом измерения и истинным значением измеряемой величины.

Точность измерений СИ – качество измерений, отражающее близость их результатов к действительному (истинному) значению измеряемой величины. Точность определяется показателями абсолютной и относительной погрешности.

Абсолютная погрешность определяется по формуле: Хп= Хп - Х0,

где: Хп – погрешность поверяемого СИ; Хп – значение той же самой величины, найденное с помощью поверяемого СИ; Х0 - значение СИ, принятое за базу для сравнения, т.е. действительное значение.

Однако в большей степени точность средств измерений характеризует относительная погрешность, т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ.

В стандартах нормируют характеристики точности, связанные и с другими погрешностями:

Систематическая погрешность – составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины. Такая погрешность может проявиться, если смещен центр тяжести СИ или СИ установлен не на горизонтальной поверхности.

Случайная погрешность – составляющая погрешности результата измерения, изменяющаяся случайным образом в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. Такие погрешности не закономерны, но неизбежны и присутствуют в результатах измерения.

Погрешность измерений не должна превышать установленных пределов, которые указаны в технической документации к прибору или в стандартах на методы контроля (испытаний, измерений, анализа).

Чтобы исключить значительные погрешности, проводят регулярную поверку средств измерений, которая включает в себя совокупность операций, выполняемых органами государственной метрологической службы или другими уполномоченными органами с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям.

В повседневной производственной практике широко пользуются обобщенной характеристикой – классом точности.

Класс точности средств измерений – обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в нормативных документах. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.

Обозначение классов точности осуществляются следующим образом:

s Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.

Измерение – совокупность операций по применению технического средства, хранящего единицу величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей в явном или неявном виде и получение значения этой величины. Вообще метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Усовершенствование точности измерений стимулировало развитие наук, предоставляя более достоверные и чувствительные средства исследований. От точности средств измерения зависит эффективность выполнения различных функций: погрешности счетчиков энергии приводят к неопределенности в учете электроэнергии; погрешности весов ведут к обману покупателей или к большим объемам неучтенного товара.

Повышение точности измерений позволяет определить недостатки технологических процессов и устранить эти недостатки, что приводит к повышению качества продукции, экономии энергетических и тепловых ресурсов, сырья, материалов.

Измерения могут быть классифицированы по характеристике точности на:

    Равноточные – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений и в одних и тех же условиях;

    Неравноточные - ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях.

К разным видам средств измерения предъявляют специфические требования: например, лабораторные средства должны обладать повышенной точностью и чувствительностью. Высокоточными СИ являются, например, эталоны. Эталон единицы величины – средство измерений, предназначенное для воспроизведения и хранения единицы величины, кратных или дольных ее значений с целью передачи ее размера другим средствам измерений данной величины. Эталоны являются высокоточными средствами измерений и поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передается «сверху вниз» от более точных средств измерений к менее точным «по цепочке»: первичный эталон (вторичный эталон (рабочий эталон 0-го разряда (рабочий эталон 1-го разряда … (рабочее средство измерений. Метрологические свойства средств измерений – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками. Все метрологические свойства средств измерений можно разделить на две группы:

    Свойства, определяющие область применения СИ

    Свойства, определяющие качество измерения. К таким свойствам относятся точность, сходимость и воспроизводимость.

Наиболее широко в метрологической практике используется свойство точности измерений, которое определяется погрешностью. Погрешность измерения – разность между результатом измерения и истинным значением измеряемой величины.

Точность измерений СИ – качество измерений, отражающее близость их результатов к действительному (истинному) значению измеряемой величины.

Точность определяется показателями абсолютной и относительной погрешности.

Абсолютная погрешность определяется по формуле: Хп= Хп - Х0, где: Хп – погрешность поверяемого СИ; Хп – значение той же самой величины, найденное с помощью поверяемого СИ; Х0 - значение СИ, принятое за базу для сравнения, т.е. действительное значение.

Однако в большей степени точность средств измерений характеризует относительная погрешность, т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ.

В стандартах нормируют характеристики точности, связанные и с другими погрешностями:

Систематическая погрешность – составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины. Такая погрешность может проявиться, если смещен центр тяжести СИ или СИ установлен не на горизонтальной поверхности.

Случайная погрешность – составляющая погрешности результата измерения, изменяющаяся случайным образом в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. Такие погрешности не закономерны, но неизбежны и присутствуют в результатах измерения.

Погрешность измерений не должна превышать установленных пределов, которые указаны в технической документации к прибору или в стандартах на методы контроля (испытаний, измерений, анализа).

Чтобы исключить значительные погрешности, проводят регулярную поверку средств измерений, которая включает в себя совокупность операций, выполняемых органами государственной метрологической службы или другими уполномоченными органами с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям.

В повседневной производственной практике широко пользуются обобщенной характеристикой – классом точности.

Класс точности средств измерений – обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в нормативных документах. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.

Обозначение классов точности осуществляются следующим образом:

    Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.

    Для СИ, пределы допускаемой основной погрешности которых принято выражать в форме относительной погрешности, обозначаются числами, которые равны этим пределам, выраженным в процентах.

Обозначения класса точности наносят на циферблаты, щитки и корпуса СИ, приводят в нормативных документах. Средствам измерений с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или для каждой измеряемой величины.

Классы точности присваиваются при разработке СИ по результатам приемочных испытаний. В связи с тем, что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки.

При подготовке и проведении высокоточных измерений в метрологической практике учитывают влияние объекта измерения, субъекта, метода измерения, средства измерения, условий измерения. Так, объект должен быть всесторонне изучен; элемент субъективизма в результатах измерения должен быть сведен к минимуму; учитывают факторы и условия, которые могут искажать результаты измерений. Поэтому необходимо соблюдать методику выполнения измерений, чтобы получить результаты с минимальной погрешностью. Такие методики изложены в законе РФ «Об обеспечении единства измерений. А в 1997 году начал действовать ГОСТ 8.563-96 «ГСИ. Методики выполнения измерений».

В моей повседневной работе мне не часто приходится сталкиваться с различными средствами измерений. Однако приведу некоторые сравнительные примеры, в которых о точности можно судить по порогу чувствительности. Во многих современных продуктовых магазинах сейчас установлены электронные весы, являющиеся рабочим средством измерений. Диапазон таких весов – от 0 до 10 кг, а цена деления (если так можно выразиться для электронной версии весов) или порог чувствительности составляет 1 грамм. Таким образом, точность взвешивания достаточно высока и погрешность может составлять 0.001 кг. И не только точность измерения, но и точность расчетов с покупателями - ведь от веса продукта зависит его цена. К сожалению, класс точности не был указан на корпусе, а сотрудники при таком вопросе пришли в замешательство.

В продуктовых магазинах часто можно встретить и обыкновенные весы, на которых взвешивают с помощью гирек, которые тоже являются рабочим средством измерений. Я первый раз обратила внимание на такие весы и увидела(!), что в нашем магазине они стоят на неровной поверхности. Дело в том, что в корпус весов вмонтирован полый шарик, наполненный водой. Если весы установлены ровно, то верхняя кромка воды (под действием физических законов) располагается параллельно поверхности. В моем случае это явно было не соблюдено. Диапазон весов – от 0 до 5 кг, а порог чувствительности – 10 грамм. Из этого следует, что такие весы менее точные, нежели описанные выше - электронные, так как погрешность может составлять 0.01 кг.

У нас на работе на складе установлены весы для взвешивания овощей. Эти весы имеют диапазон от 0 до 200 кг, так что любой взрослый человек может легко на них взвеситься. Порог чувствительности составляет 200 грамм и это указано на циферблате. Помимо этого, на циферблате указано, что весы изготовлены фирмой Suprema S.p.a., диапазон 0-200 кг, e-d=200 gr, серийный номер № 122001/21 и индивидуальный номер №91097. Также там указан и класс точности - III - для подобных средств измерений, относящихся к профессиональному оборудованию. В паспорте этих весов указано, что классы точности для данной продукции установлены от I до III, вероятно, согласно нормативным документам, действующим в стране-производителе.

И, наконец, безмен, имеющий самый низкий класс точности и являющийся рабочим средством измерения. С помощью этого средства можно произвести скорее примерное взвешивание, т.к. цена деления составляет 0.5 кг и погрешность при измерении будет очень значительна. Диапазон безмена – от 0 до 7 кг. Но даже при таком неточном средстве измерения, результат зависит от некоторых факторов. В данном случае результат измерений напрямую зависел от человека, производящего измерения. При повторном взвешивании погрешность была очень высока и зависела от дрожания рук и от того, насколько точно вертикально было положение безмена. 1

Похожие статьи

  • Царь Фёдор Алексеевич - неизвестный реформатор

    Два царствования первых государей Романова дома были периодом господства приказного люда, расширения письмоводства, бессилия закона, пустосвятства, повсеместного обдирательства работящего народа, всеобщего обмана, побегов, разбоев и...

  • Понятие технологизации Объективные причины технологизации социальной работы

    Мировой опыт показывает, что в условиях динамичных экономических и социальных изменений в практике управления все в большей степени утверждается инновационный метод освоения социального пространства - его технологизация. В ходе...

  • Отметьте какая энергия зашифрована в данном ребусе

    Как известно, личностью не рождаются, ею становятся, и основы этого закладываются еще в детском возрасте. Немалую роль в становлении человека как интеллектуальной индивидуальности играют его умственные способности и смекалка, развивать...

  • Нестыковки в истории человечества

    Американским кинозрителям фильм известен под названием «Иван Васильевич: Назад в будущее» (en Ivan Vasilievich: Back to the Future) - см. Назад в будущее .Шведский посол говорит не на шведском языке, а на ломаном немецком (немецкий язык...

  • Самая большая волна в мире: все еще впереди

    В декабре 2004 года фото самой большой волны в мире облетело все издания мира. 26 декабря произошло землетрясение в Азии, результатом которого стала волна-цунами, уничтожившая более 235 тысяч человек.СМИ публиковали фото разрушений, уверяя...

  • Император Пётр Первый Последние секунды жизни петра 1

    Петр и Екатерина выехали из Астрахани в Москву в конце ноября 1722 года. Еще до их отъезда начал выпадать снег. Волгу ниже Царицына сковало льдом, и Петр не смог пуститься в путь на галерах. Отыскать подходящие для царского кортежа сани...