Энергетический профиль реакции энергия активации. Скорость химической реакции и ее зависимость от различных факторов. Механизмы органических реакций

Теория столкновений позволяет установить математическое соотношение между скоростью реакции и частотой столкновений, а также вероятностью того, что энергия столкновения E превосходит минимальную энергию Еm, необходимую для осуществления реакции. Это соотношение имеет вид

Скорость реакции = (Частота столкновений) (Вероятность того, что E > Em) Из этого соотношения можно вывести следующее уравнение:


где к-константа скорости реакции; Р-стерический фактор, имеющий значение от 0 до 1 и соответствующий той части сталкивающихся молекул, которые имеют необходимую взаимную ориентацию при столкновении; Z-число столкновений, которое связано с частотой столкновений; Еа-энергия активации, соответствующая минимальной энергии столкновений, которую должны иметь реагирующие молекулы; Л-газовая постоянная; T-абсолютная температура.

Два множителя, P и Z, можно объединить в одну постоянную А, которую называют предэкспоненциальным множителем или константой Аррениуса. В результате получается известное уравнение Аррениуса, с которым мы уже познакомились в предыдущем разделе:

ТЕОРИЯ ПЕРЕХОДНОГО СОСТОЯНИЯ

Теория переходного состояния рассматривает реагирующие молекулы как единую систему. Она подробно исследует изменения геометрического расположения атомов в этой системе по мере того, как в ней происходит превращение реагентов в продукты. Геометрическое положение атомов в такой молекулярной системе называется конфигурацией. По мере того, как конфигурация реагентов превращается в конфигурацию продуктов, происходит постепенное возрастание потенциальный энергии системы до тех пор, пока она не достигнет максимума. В момент достижения максимума энергии молекулы имеют критическую конфигурацию, которая называется переходным состоянием или активированным комплексом. Достичь этой критической конфигурации способны лишь те молекулы, которые обладают достаточной полной энергией. По мере того, как конфигурация этого переходного состояния превращается в конфигурацию продуктов, происходит уменьшение потенциальной энергии (рис. 9.12). Координата реакции на этих двух диаграммах представляет изменения в геометрическом расположении атомов реагирующих молекул, рассматриваемых как единая система, по мере того, как эта система испытывает превращение, начинающееся с конфигурации реагентов, переходящее в критическую конфигурацию и завершающееся конфигурацией продуктов. Если в реакции образуются интермедиаты, то возникновению каждого интермедиата соответствует минимум на графике зависимости потенциальной энергии от координаты реакции (рис. 9.13).


Рис. 9.12. Энергетический профиль реакции - график зависимости потенциальной энергии от координаты реакции, а-для экзотермической реакции; б-для эндотермической реакции.

Теория переходного состояния может использоваться для прогнозирования постоянных А и Ел в уравнении Аррениуса. Использование этой теории и современной вычислительной техники позволяет устанавливать точную картину протекания химических реакций на молекулярном уровне.

Равновесие процесса перехода одной фазы в другую без изменения химического состава называется фазовым равновесием. Примерами фазового равновесия могут быть следующие процессы:

испарение

Для фазового равновесия соблюдается принцип Ле Шателье.

При повышении температуры равновесие смещается в сторону эндотермического процесса, например, плавления и испарения. С увеличением давления равновесие смещается в сторону процессов, при которых газ или пар превращаются в жидкое или твёрдое состояние.

Правило фаз.

Сформулировано Дж. Гиббсом. Число степеней свободы C , фазФ , независимых компонентовК и внешних условийн , влияющих на равновесие, взаимосвязаны соотношением:

C + Ф = К + н

2.4. Механизм химической реакций. Цепные реакции. Фотохимические процессы. Гомогенный и гетерогенный катализ. Автокатализ. Ферментативный катализ. Каталитические яды. Колебательные реакции.

Энергия активации. Энергетический профиль реакции.

Реакции происходят в результате непосредственного столкновения молекул. Однако не все столкновения приводят к химическому взаимодействию. Образованию новых веществ способствуют только молекулы, обладающие достаточным запасом энергии. Такие молекулы называются активными молекулами.

Та минимальная энергия, достаточная для начала химической реакции называется энергией активации и выражается в ккал или кДж. Чем меньше энергия активации, тем быстрее идет реакция.

В реакциях, где энергия активации больше, чем 150 кДж при t=25°С скорость очень мала или практически эти реакции не протекают. В реакциях, где энергия активации меньше 60 кДж, скорость очень большая (взрыв).

Величина энергии активации Еа зависит от природы реагирующих элементов и служит характеристикой каждой реакции.

Энергетическая диаграмма хода реакции с образованием

активированного комплекса.

Чтобы реагирующие вещества А и В образовали продукты реакции С и Д они должны преодолеть энергетический барьер МL. На это затрачивается энергия активации Еа. При этом в ходе реакции из частиц реализующих веществ, образуется промежуточная неустойчивая группировка - активированный комплекс (рис.2.6).

Этот комплекс распадается с образованием конечных продуктов, причем выделяется такое количество энергии, которое позволяет конечным продуктам спуститься до уровня средней энергии конечных продуктов.

Т.о. изменение продуктов можно выразить в виде схем для эндотермической и экзотермической реакции (рис.2.7, 2.8).

схема протекания

экзотермической реакции

схема протекания

эндотермической реакции

О
бычно реакции между веществами с прочными ковалентными связями характеризуются большими значениями Еа и идут медленно. Это относится ко многим взаимодействиям, как

скорость которых при стандартных условиях равна 0.

М
алыми значениями Еа и очень большими скоростями характеризуются ионные взаимодействия в растворах

Изменение энтальпии DH, по существу, - разность энергий связей реагентов и продуктов, включая энергии сопряжения, напряжения и сольватации. DH можно рассчитать, суммируя энергии всех разрывающихся в ходе реакции связей и вычитая из них сумму энергий всех образующихся связей, прибавив все изменения энергий сопряжения, напряжения и сольватации. Кроме того, изменение энтальпии можно определить экспериментально, измерив тепловой эффект реакции, т.к. изменение энтальпии равно тепловому эффекту реакции, взятому с обратным знаком.

- D H =

Изменение энтропии DS характеризует меру беспорядка системы. В органической химии этот фактор редко играет большую роль, т.к. реакции идут при относительно небольших температурах, при которых энтропийный фактор мал. Тем не менее, в некоторых случаях изменение энтропии может играть заметную роль:

· поскольку газы имеют более высокую энтропию, чем жидкости (тем более, чем твердые вещества), то любая реакция, в которой исходные вещества жидкие или твердые, а один или более продуктов – газообразные, термодинамически выгодна, поскольку энтропия системы возрастает;

· если в ходе реакции образуется больше молекул продуктов, чем молекул исходных веществ, то реакция протекает с увеличением энтропии.

Само по себе отрицательное значение DG не означает, что реакция будет протекать в обозримый период времени. Отрицательная величина изменения свободной энергии является необходимым, но не достаточным фактором самопроизвольного протекания химической реакции. Например, реакция двух моль водорода с одним моль кислорода, протекающая с образованием воды, характеризуется большой отрицательной величиной изменения свободной энергии. Однако, смесь О 2 и Н 2 может десятилетиями храниться при комнатной температуре без каких-либо признаков химической реакции.

Механизмы органических реакций

Для понимания органических реакций чрезвычайно полезно знание их механизмов.

Механизм реакции – детальное описание процесса превращения исходных соединений в продукты . Механизм включает данные о способе и последовательности разрыва и образования связей, строении интермедиатов (промежуточных продуктов), кинетике, термодинамике и стереохимии реакции. Механизм не должен противоречить имеющимся экспериментальным фактам, а при появлении новых объяснять и их.

При рассмотрении тонких особенностей механизмов чрезвычайно полезно использование так называемой энергетической диаграммы (энергетического профиля ) реакции. Это графическая зависимость энергии системы от сложной функции расстояния между реагирующими веществами, которую обычно называют «координатой реакции » или «ходом реакции » (рис 3.1).


Рис. 3.1. Энергетическая диаграмма: А – эндо-, Б – экзотермическая реакция.

Данный рисунок иллюстрирует протекание одностадийных реакций. Эндотермическая реакция проходит с поглощением тепла, экзотермическая – с выделением.

Практически все химические реакции происходят при столкновении двух или более, что очень редко, реагирующих частиц. Из рис. 3.1 видно, что сближение реагирующих молекул ведет к возрастанию энергии системы до некоторого максимума. Соударения будут эффективными в том случае, когда реагирующие вещества обладают некоторым избытком энергии по сравнению со средней энергией молекул в системе. Не имеющие такого избытка энергии частицы после соударения разлетаются в разные стороны. Энергия активации - избыток энергии, необходимый для преодоления энергетического барьера. Максимальной энергии системы (высшая точка энергетической диаграммы) соответствует переходное состояние (активированный комплекс ). Именно наличие переходного состояния объясняет причину того, что даже экзотермические реакции обычно не происходят самопроизвольно, а только при нагревании или других способах активации системы.

Именно переходное состояние – высшая энергетическая точка реакции – определяет ход всего превращения. Знание его строения способно внести ясность в механизм химического превращения. Однако, время жизни активированного комплекса столь мало, что не существует физических методов, позволяющих его зарегистрировать, и, следовательно, получить знания о его строении.

Постулат Дж. Хэммонда

Для косвенной оценки строения переходного состояния используют постулат Дж. Хэммонда (1955 г.) : несущественные энергетические изменения сопровождаются незначительными изменениями молекулярной структуры . Более понятная формулировка: строение переходного состояния похоже на строение тех веществ, к которым оно ближе по энергии . В экзотермических реакциях переходное состояние ближе по строению к исходным реагентам (рис. 3.1). Такой активированный комплекс называют ранним переходным состоянием . Переходное состояние в эндотермических реакциях ближе по структуре к продуктам реакции, его называют поздним . Однотипные воздействия на похожие структуры приводят к близкому результату. Поэтому все факторы, стабилизирующие (понижающие энергию состояния) энергетически близкое к переходному состоянию исходное, промежуточное или конечное вещество, понижают и энергию активированного комплекса .

Использование постулата Хэммонда особенно полезно при рассмотрении многостадийных реакций (рис. 3.2).



Рис 3.2. Энергетическая диаграмма двухстадийной реакции

Из рисунка 3.2 видно, что реакция протекает в две стадии, через один промежуточный продукт. Превращение продуктов в интермедиат (первая стадия) имеет большее значение для всей реакции, чем превращение интермедиата в продукты реакции (вторая стадия). В этом убеждают соответствующие энергии активации первой и второй стадий (Ea 1 и Ea 2 соответственно). Весь ход реакции определяет её высшая энергетическая точка - переходное состояние первой стадии [ПС 1 ]. Если применить к этой реакции постулат Хэммонда, легко сделать вывод, что к переходным состояниям обеих стадий реакции энергетически ближе всего промежуточный продукт.

С.Аррениус открыл температурную зависимость скорости многих реакций, которую можно описать уравнением:

k = А е -Е* / RT

где k - константа скорости, e - основание натуральных логарифмов, R - универ­саль­ная газовая постоянная, T – температура, А - предэкспоненциальный множитель, Е* - энергия активации реакции.

теория активных соударений (столкновений)

1) Химическое взаимодействие между молекулами возможно только при их столкновении.

2) Не каждое столкновение молекул приводит к химическому взаимодействию, т. е. является результативным или, по терминологии Аррениуса, ак­тивным. Существует некий энергетический барьер , преодолеть который и вступить во взаимодействие может лишь часть молекул, причём, как правило, это очень малая часть от их общего числа в системе.

3) Причиной, обусловливающей существование энергетического барьера, является взаимное отталкивание электронных оболочек молекул при их сближении.

4) Для того, чтобы молекулы могли при столкновении преодолеть энергетический барьер, они должны двигаться навстречу друг другу с достаточно большой скоростью. Для достижения этой необходимой скорости нужна определённая энергия, называемая энергией активации. Энергия активацииЕ * - это избыток энергии активных молекул по сравнению с неактивными, или иначе, энергия, которой должны обладать молекулы, чтобы иметь возможность вступить во взаимодействие. Размерность СИ энергии активации - Дж/моль.

5) Чем больше энергия активации реакции, тем больше энергетический барьер, и тем меньшее число молекул способно его преодолеть. Поэтому, чем больше Е * , тем медленнее идёт реакция.

6) С повышением температуры увеличивается скорость теплового движения молекул, поэтому доля активных молекул возрастает. Иными словами, при повышении температуры происходит термическая акти­ва­ция , приводящая к увеличению скорости реакции.

вычисление энергии активации реакции по значениям двух констант скорости при различных температурах:


Т 2 - Т 1 k 1

Активированный комплекс представляет собой неустойчивое образование, в которое входят все атомы столкнувшихся и вступивших во взаимодействие молекул. Время жизни активированного комплекса очень мало; оно измеряется малыми (миллионными, десятимиллионными и т. д.) долями секунды. Расстояния между атомами в активированном ком­плек­се несколько больше, чем в обычных молекулах, поэтому для его образования требуется дополнительная энергия.

Наглядное представление о протекании реакции во времени в соответствии с теорией переходного состояния может дать энергетический про­филь реакции, например, экзотермической(рис. 12.6).

По оси ординат откладывается энергия системы Е , а ось абсцисс - это так называемая координата реакции. Среднему запасу энергии теплового движения молекул исходных веществ соответствует уровень Е исх, энергии, запасаемой в активированном комплексе - уровень Е АК. Тогда разность Е АК - Е исх равна величине энергетического барьера, который должны преодолеть молекулы для того, чтобы вступить во взаимодействие энергия активации. Наглядное представление о нём даёт кривая, соединяющая уровни Е исх и Е АК. Высота энергетического барьера зависит от природы реагирующих веществ, энергии, необходимой для образования активированного комплекса (энергии активации), а также от средней энергии теплового движения молекул Е исх.

При повышении температуры уровень Е исх поднимается, величина энергетического барьера становится меньше и во взаимодействие может вступить большее число молекул. Это и служит причиной ускорения реакции с повышением температуры. При понижении температуры, наоборот, уровень Е исх опускается и величина энергетического барьера возрастает, что приводит к уменьшению скорости реакции.

При распаде активированного комплекса с образованием молекул продуктов выделяется энергия, которой соответствует разность Е АК - Е прод, где Е прод - средний запас энергии молекул продуктов. Часть этой выделяющейся энергии, равная разности Е АК - Е исх, пойдёт на активацию новых молекул исходных веществ, а избыток Е исх - Е прод выделится в окружающую среду в виде экзотермического теплового эффекта реакции DН r .

Для эндотермических реакцийэнергетический профиль выглядит несколько иначе (рис. 12.7). Видно, что в этом случае энергетический уровень Е исх ниже, чем уровень Е прод. В результате этого энергии Е АК - Е прод, выделяющейся при распаде активированного комплекса, недостаточно для того,

чтобы вызвать активацию новых молекул реагирующих веществ. Поэтому для продолжения реакции необходим подвод энергии извне, в виде эндотермического теплового эффекта.

Существование активированного комплекса подтверждается экспериментальными данными. Так, например, для одной из несложных модельных реакций взаимодействия атома водорода с молекулой водорода

Н 2 + Н ® Н + Н 2 ,

значение энергии активации близко к 36,8 кДж/моль. Если бы реакция шла через стадию полной диссоциации молекул Н 2 , а не через стадию образования активированного комплекса Н 2 ·Н, то потребовалась бы энергия активации 435,1 кДж/моль.

55. фотохимия. Фотохимические реакции. Основные законы фотохимии(Закон Гротгуса-Дрейпера, закон Бунзена-Роско, закон Штарка-Эйнштейна).

фотохимия это - раздел химической кинетики, занимающийся поведением электронно-возбужденных молекул.

В биологии известно несколько фотохимических процессов, имеющих чрезвычайно большое значение для жизнедеятельности как отдельных организмов, так и биосферы в целом. В первую очередь среди таких процессов следует назвать фотосинтез .Кроме того, чрезвычайно важными являются фотохимия зрения, фотохимия синтеза витаминов, например, витамина D в человеческой коже, фотохимия загара и др.

Фотохимическая реакция разложения галогенидов серебра лежит в основе фотографического процесса. Существуют фотохромные материалы, способные изменять цвет или прозрачность под действием света, что используется, в частности, для фотохимической записи информации или для изготовления солнцезащитных очков. Фотохимические реакции используются и в химической промышленности, например, при синтезе капролактама или при фотополимеризации метилметакрилата в производстве органического стекла.

Для фармации фотохимические реакции важны в первую очередь постольку, поскольку свет может вызывать деструкцию (фотолиз )многих лекарственных препаратов. Разложению под действием света подвержены и многие другие вещества и материалы - древесина, бумага, краски, пластмассы и т. д.

В химии достаточно широко используется люминесцентный метод анализа, основанный на изучении спектров излучения, испускаемого возбужденными молекулами исследуемых веществ.

Законы фотохимии

Известны следующие законы фотохимии:

Закон Гроттгуса - Дрейпера (К.И.Д.Гроттгус - 1818; Дж.У.Дрейпер - 1842).

Реакции происходят в результате непосредственного столкновения молекул. Однако не все столкновения приводят к химическому взаимодействию. Образованию новых веществ способствуют только молекулы, обладающие достаточным запасом энергии. Такие молекулы называются активными молекулами.

Та минимальная энергия, достаточная для начала химической реакции называется энергией активации и выражается в ккал или кДж. Чем меньше энергия активации, тем быстрее идет реакция.

В реакциях, где энергия активации больше, чем 150 кДж при t=25°С скорость очень мала или практически эти реакции не протекают. В реакциях, где энергия активации меньше 60 кДж, скорость очень большая (взрыв).

Величина энергии активации Еа зависит от природы реагирующих элементов и служит характеристикой каждой реакции.


Энергетическая диаграмма хода реакции с образованием

активированного комплекса.

Чтобы реагирующие вещества А и В образовали продукты реакции С и Д они должны преодолеть энергетический барьер МL. На это затрачивается энергия активации Еа. При этом в ходе реакции из частиц реализующих веществ, образуется промежуточная неустойчивая группировка - активированный комплекс (рис.2.6).

Этот комплекс распадается с образованием конечных продуктов, причем выделяется такое количество энергии, которое позволяет конечным продуктам спуститься до уровня средней энергии конечных продуктов.

Т.о. изменение продуктов можно выразить в виде схем для эндотермической и экзотермической реакции (рис.2.7, 2.8).



Обычно реакции между веществами с прочными ковалентными связями характеризуются большими значениями Еа и идут медленно. Это относится ко многим взаимодействиям, как

скорость которых при стандартных условиях равна 0.

Малыми значениями Еа и очень большими скоростями характеризуются ионные взаимодействия в растворах

Катализ

Общие понятия.

Катализом называется ускорение скорости реакции в присутствии специфических веществ, количество которых в ходе реакции не изменяется.

Эти вещества только ускоряют скорость реакции, но не расходуются в результате ее протекании.

Катализаторы могут участвовать в образовании промежуточных продуктов реакции, но к концу взаимодействия полностью регенерируются.

Замедление реакций осуществляется при помощи ингибиторов(отрицательных катализаторов).

– При катализе не изменяется величина теплового эффекта реакции.

– Если катализируемая реакция обратима, катализатор не влияет на равновесие, не меняет Кр и равновесных концентраций компонентов системы. Он в равной степени ускоряет прямую и обратную реакцию.

– Катализаторы действуют избирательно, селективно.

Катализатор, активно ускоряющий одно взаимодействие, безразличен к другому.

Из одних и тех же веществ можно получить различные продукты, применяя разные катализаторы.


Некоторые вещества снижают или полностью уничтожают активность катализатора их называют каталитическими ядами – соединения мышьяка, свинца, цианида.

Добавки, увеличивающие активность катализатора называют промоторами.

Активность, селективность и срок службы катализатора во многом зависит от температуры каталитической реакции.

Существуют катализаторы, не обладающие специфичностью, их называют универсальными. К ним относятся металлические Nl , Pt , палладий, которые катализируют процессы гидрирования, окисления. Многие процессы являются автокаталитическими. В этих реакциях катализатором служит один из продуктов.

Цепные реакции

Под цепными реакциями понимают такие химические реакции, в которых появление промежуточно-активной частицы вызывает большое число (цепь) превращений исходныхмолекул.

В качестве активной частицы выступают свободные атомы, возбужденные молекулы –радикалы – частицы, имеющие один неспаренный электрон.

Большую роль в создании учения цепных реакций сыграли работы

Н. Н. Семенова и С. Хиншельвуда, которые за исследования в этой области получили Нобелевскую премию (1956 г).

Цепные реакции составляют основу многих практически важных процессов (крекинга, полимеризации, сгорания топлива и т. п.).

Различают 3 типа цепных реакций:

1. С неразветвленными цепями

2. С разветвленными цепями

3. С вырожденно-разветвленными

Каждый тип реакций включает 3 этапа - зарождение цепей, их развитие и обрыв.

Химические процессы с неразветвленными цепями можно рассмотреть на примере взаимодействия между водородом и хлором:

Подумайте, какая молекула - водорода или хлора - может распасться на атомы. Энергия связи молекулы водорода равна 436 кДж/моль, хлора 243. Конечно, будет происходить распад молекулы хлора.

Если смесь и храниться в темноте, то указанная реакция при обычных температурах не протекает. Для бурного течения этой реакции достаточно ввести в смесь ничтожное количество паров металлического натрия.

Схему реакции по этапам можно записать так.

Похожие статьи

  • Неправильные глаголы английского языка и их перевод Глагол leave в прошедшем

    Добавить в закладки Удалить из закладок неправильный глагол leave - left - left оставить (оставлять, покидать, уезжать, покинуть, выйти, уходить) оставаться (завещать) предоставлять (позволять) передавать выходить...

  • Спецотдел Бокия или Советская «Аненербе

    Яков Блюмкин ШАМБАЛА5 (100%) 1 vote[s] Имя Якова Блюмкина прежде всего ассоциируется с убийством немецкого посла Мирбаха в июле 1918 года. Однако это только один, пусть и яркий, эпизод его незаурядной жизни. И наиболее загадочной ее...

  • Царь Фёдор Алексеевич - неизвестный реформатор

    Два царствования первых государей Романова дома были периодом господства приказного люда, расширения письмоводства, бессилия закона, пустосвятства, повсеместного обдирательства работящего народа, всеобщего обмана, побегов, разбоев и...

  • Понятие технологизации Объективные причины технологизации социальной работы

    Мировой опыт показывает, что в условиях динамичных экономических и социальных изменений в практике управления все в большей степени утверждается инновационный метод освоения социального пространства - его технологизация. В ходе...

  • Отметьте какая энергия зашифрована в данном ребусе

    Как известно, личностью не рождаются, ею становятся, и основы этого закладываются еще в детском возрасте. Немалую роль в становлении человека как интеллектуальной индивидуальности играют его умственные способности и смекалка, развивать...

  • Нестыковки в истории человечества

    Американским кинозрителям фильм известен под названием «Иван Васильевич: Назад в будущее» (en Ivan Vasilievich: Back to the Future) - см. Назад в будущее .Шведский посол говорит не на шведском языке, а на ломаном немецком (немецкий язык...