Вихревое электрическое поле явление самоиндукции. Закон электромагнитной индукции. Вихревые токи. Вихревое электрическое поле

Переменное магнитное поле порождает инду­цированное электрическое поле . Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов - бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле
(вихревое электр. поле)

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.

Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? - т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

где R - сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике - электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.
Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле - создается неподвижными электрическими зарядами, силовые линии поля разомкнуты - -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле (вихревое электр. поле) - вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.


Вихревые токи

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин.
В ферритах - магнитных изоляторах вихревые токи практически не возникают.


Использование вихревых токов

Нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

Это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.




Электромагнитное поле - Класс!ная физика


Любознательным

Сальто-мортале жука-щелкуна

Если пощекотать лежащего на спинке жука-щелкуна, он подпрыгивает вверх сантиметров на 25, при этом раздается громкий щелчок. Ерунда, возможно, скажете вы.
Но, действительно, жучок без помощи ног делает толчок с начальным ускорением 400 g, а затем переворачивается в воздухе и приземляется уже на ноги. 400 g - удивительно!
Еще более удивительно то, что мощность, развиваемая при толчке, раз в сто больше мощности, которую может обеспечить какая-либо из мышц жучка. Как удается жучку развить такую огромную мощность?
Часто ли он способен совершать свои изумительные прыжки? Чем ограничена частота их повторения?

Оказывается...
Когда жучок лежит вверх ногами, особый выступ на передней части его тела мешает ему распрямиться, чтобы совершить прыжок. Какое-то время он накапливает мышечное напряжение, затем, резко изогнувшись, подбрасывает себя вверх.
Прежде чем жучок снова сможет подпрыгнуть, он должен снова медленно «напрячь» мышцы.

Явление электромагнитной индукции было открыто М. Фарадеем в 1831 г. Явление можно наблюдать на следующих опытах. Возьмем катушку с большим числом витков (соленоид), замкнем ее с гальванометром, и будем вдвигать с одного из ее концов вдоль оси постоянный магнит. При этом в соленоиде возникнет электрический ток, который обнаружится по отклонению стрелки гальванометра. Этот ток прекратится при прекращении движения магнита. Если удалять магнит из соленоида, то в соленоиде снова возникнет ток, но уже противоположного направления. Это же явление будет иметь место, если магнит оставить неподвижным, а перемещать соленоид. Вместо магнита можно взять второй соленоид (рис. 51 ), по которому течет постоянный ток формула" src="http://hi-edu.ru/e-books/xbook785/files/I2.gif" border="0" align="absmiddle" alt=".

Явление электромагнитной индукции заключается в следующем: во всяком замкнутом проводящем контуре при изменении потока магнитной индукции через площадь, ограниченную этим контуром, возникает электрический ток. Этот ток называется индукционным.

Возникновение индукционного тока в замкнутом контуре обусловлено появлением в этом контуре под влиянием изменяющегося со временем потока опред-е">электродвижущей силы ЭДС. Величина этой ЭДС была впервые связана со скоростью изменения потока магнитной индукции Фарадеем

опред-е">закон Фарадея

Знак минус в законе означает, что ЭДС индукции всегда имеет такое направление, что препятствует причине, которая ее вызывает. Это правило установил петербургский профессор Э.Х. Ленц.

Если рассмотреть магнитный поток формула" src="http://hi-edu.ru/e-books/xbook785/files/108-2.gif" border="0" align="absmiddle" alt=" (рис. 52, б ), либо направлен противоположно ему, если он возрастает пометка">В . Поток магнитной индукции через площадь S, ограниченную рамкой, равен

формула" src="http://hi-edu.ru/e-books/xbook785/files/109-1.gif" border="0" align="absmiddle" alt=" угол между нормалью к рамке и вектором В изменяется

формула" src="http://hi-edu.ru/e-books/xbook785/files/109-3.gif" border="0" align="absmiddle" alt=" Согласно закону Фарадея (12.1), при изменяющемся потоке сквозь рамку в ней возникает индукционный ток, который будет изменяться со временем с частотой, равной скорости вращения рамки формула" src="http://hi-edu.ru/e-books/xbook785/files/109-4.gif" border="0" align="absmiddle" alt="

Как видно, ЭДС индукции изменяется по гармоническому закону с частотой формула" src="http://hi-edu.ru/e-books/xbook785/files/109-5.gif" border="0" align="absmiddle" alt=" Получение ЭДС при вращении витка в магнитном поле лежит в основе работы генератора переменного тока.

Механизм возникновения индукционного тока в движущемся проводнике можно объяснить с помощью силы Лоренца F = qvB.

Под действием силы Лоренца происходит разделение зарядов: положительные накапливаются на одном конце проводника, отрицательные - на другом (рис. 53 ). Эти заряды создают внутри проводника электростатическое кулоновское поле. Если проводник разомкнут, то движение зарядов под действием силы Лоренца будет происходить до тех пор, пока электрическая сила не уравновесит силу Лоренца. Действие силы Лоренца аналогично действию некоторого электрического поля, это поле является сторонним полем.

Возникновение ЭДС индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Какова же природа сторонних сил (неэлектростатического происхождения) в данном случае?

Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Это поле характеризуется напряженностью (индекс указывает на причину возникновения этого поля - магнитного поля).

Циркуляция этого электрического поля пометка">L не равна нулю:

формула" src="http://hi-edu.ru/e-books/xbook785/files/111-1.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook785/files/111-2.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook785/files/111-5.gif" border="0" align="absmiddle" alt=" - частная производная индукции В по времени.

Для электростатического поля пометка">Q ) циркуляция вдоль любого замкнутого контура равна нулю:

опред-е">потенциальным.

Электрическое поле опред-е">вихревым, для него циркуляция вдоль замкнутого контура L не равна нулю:

пометка">I(t), то он создает магнитное поле с индукцией B(t), а следовательно, и поток формула" src="http://hi-edu.ru/e-books/xbook785/files/112.gif" border="0" align="absmiddle" alt="

Явление электромагнитной индукции, вызванное изменением тока в самом контуре, называют самоиндукцией. Ее первопричиной является изменение тока в контуре, которое легче измерить, чем изменение магнитного потока.

В любой точке поверхности, натянутой на контур, индукция dB пропорциональна току в контуре. Если ее проинтегрировать по всей поверхности, то полный магнитный поток пометка">I

пометка">L - индуктивность контура, коэффициент пропорциональности, зависящий от конфигурации контура.

Индуктивность показывает, какой магнитный поток пронизывает поверхность, охваченную контуром, при силе тока в нем 1 А. Ее единица - Вб/А, которая называется генри (Гн).

Если контур имеет сложную форму, например, содержит несколько витков, то вместо опред-е">потокосцепление формула" src="http://hi-edu.ru/e-books/xbook785/files/112-4.gif" border="0" align="absmiddle" alt="

выражение справедливо при L = const.

Из него следует еще одно определение L (более важное на практике): индуктивность показывает, какая ЭДС самоиндукции возникает в контуре, если скорость изменения силы тока в нем составляет 1 А/с.

Для соленоида магнитный поток через один виток пометка">N витков соленоида (потокосцепление),

пометка">V =Sl - объем соленоида.

Сравнивая это выражение с (12.4) , получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/mu.gif" border="0" align="absmiddle" alt=".

Магнитный поток сквозь поверхность, охваченную контуром 2, может быть создан током иллюстрация" src="http://hi-edu.ru/e-books/xbook785/files/ris54.gif" border="0">

Обозначим формула" src="http://hi-edu.ru/e-books/xbook785/files/113.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook785/files/I1.gif" border="0" align="absmiddle" alt=" изменяется, то в контуре 2 индуцируется ЭДС взаимной индукции

формула" src="http://hi-edu.ru/e-books/xbook785/files/I2.gif" border="0" align="absmiddle" alt=" возникает ЭДС взаимной индукции

формула" src="http://hi-edu.ru/e-books/xbook785/files/113-3.gif" border="0" align="absmiddle" alt=" - взаимные индуктивности контуров, они зависят от геометрической формы, размеров, взаимного расположения контуров и магнитной проницаемости среды.

Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник (рис. 55 ). токами Фуко, или вихревыми токами.

Колеблющаяся между полюсами электромагнита тяжелая металлическая пластинка останавливается, если включить постоянный ток, питающий электромагнит. Вся ее энергия превращается в тепло, выделяемое токами Фуко. В неподвижной пластинке токи отсутствуют.

Вихревые токи могут быть значительно ослаблены, если в пластинке сделать разрезы, увеличивающие ее сопротивление. В сплошных сердечниках трансформаторов, электромоторов, работающих на переменном токе, токи Фуко выделяли бы значительное количество тепла. Поэтому сердечники делают наборными, составляя их из тонких пластин, разделенных слоем диэлектрика.

Явление возникновения индукционных токов Фуко лежит в основе работы индукционных печей, которые позволяют разогревать металлы до температуры плавления.

Токи Фуко подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Этот факт используется для успокоения подвижных частей различных приборов (демпфирование).

Вихревые токи возникают и в проводах, по которым течет переменный электрический ток. Направление вихревых токов таково, что они противодействуют изменению первичного тока в проводнике. Таким образом, переменный ток оказывается распределенным по сечению провода неравномерно, он как бы вытесняется на поверхность проводника. У поверхности провода плотность тока максимальна, а в глубь проводника убывает и достигает наименьшего значения на его оси. Это явление называют скин-эффектом (skin - кожа). Ток концентрируется в «кожице» проводника. Поэтому при больших частотах нет надобности в проводниках большого сечения: все равно ток будет идти лишь в поверхностном слое.

Как же возникает электродвижущая сила в проводнике, который находится в переменном магнитном поле? Что такое вихревое электрическое поле, его природа и причины возникновения? Какие основные свойства этого поля? На все эти и многие другие вопросы ответит сегодняшний урок.

Тема: Электромагнитная индукция

Урок: Вихревое электрическое поле

Вспомним о том, что правило Ленца позволяет определять направление индукционного тока в контуре, находящемся во внешнем магнитном поле с переменным потоком. Отталкиваясь от этого правила, удалось сформулировать закон электромагнитной индукции.

Закон электромагнитной индукции

При изменении магнитного потока, пронизывающего площадь контура, в этом контуре возникает электродвижущая сила, численно равная скорости изменения магнитного потока, взятой со знаком минус.

Как же возникает эта электродвижущая сила? Оказывается, ЭДС в проводнике, который находится в переменном магнитном поле, связано с возникновением нового объекта - вихревого электрического поля .

Рассмотрим опыт. Есть катушка из медной проволоки, в которую вставлен железный сердечник для того, чтобы усилить магнитное поле катушки. Катушка через проводники подключена к источнику переменного тока. Также есть виток из проволоки, помещенной на деревянную основу. К этому витку подключена электрическая лампочка. Материал проволоки покрыт изоляцией. Основание катушки сделано из дерева, т. е. из материала, не проводящего электрический ток. Каркас витка также изготовлен из дерева. Таким образом, исключается всякая возможность контакта лампочки с цепью, подключённой к источнику тока. При замыкании источника лампочка загорается, следовательно, в витке протекает электрический ток - значит, сторонние силы в этом витке совершают работу. Необходимо выяснить, откуда берутся сторонние силы.

Магнитное поле, пронизывающее плоскость витка, не может вызвать появление электрического поля, поскольку магнитное поле действует только на движущиеся заряды. Согласно электронной теории проводимости металлов, внутри них существуют электроны, которые могут свободно двигаться внутри кристаллической решётки. Однако, это движение в отсутствие внешнего электрического поля носит беспорядочный характер. Такая беспорядочность приводит к тому, что суммарное действие магнитного поля на проводник с током равно нулю. Этим электромагнитное поле отличается от электростатического, которое действует и на неподвижные заряды. Так, электрическое поле действует на движущиеся и на неподвижные заряды. Однако, та разновидность электрического поля, которая, изучалась ранее, создаётся только электрическими зарядами. Индукционный ток, в свою очередь, создаётся переменным магнитным полем.

Предположим, что электроны в проводнике приходят в упорядоченное движение под действием некой новой разновидности электрического поля. И это электрическое поле порождается не электрическими зарядами, а переменным магнитным полем. К подобной идее пришли Фарадей и Максвелл. Главное в этой идее то, что переменное во времени магнитное поле порождает электрическое. Проводник с имеющимися в нём свободными электронами позволяет обнаружить это поле. Это электрическое поле приводит в движение электроны, находящиеся в проводнике. Явление электромагнитной индукции состоит не столько в появлении индукционного тока, сколько в появлении новой разновидности электрического поля, которое приводит в движение электрические заряды в проводнике (рис. 1).


Вихревое поле отличается от статического. Оно не порождается неподвижными зарядами, следовательно, линии напряженности этого поля не могут начинаться и заканчиваться на заряде. Согласно исследованиям, линии напряжённости вихревого поля представляют собой замкнутые линии подобно линиям индукции магнитного поля. Следовательно, это электрическое поле является вихревым - таким же, как и магнитное поле.

Второе свойство касается работы сил этого нового поля. Изучая электростатическое поле, выяснили, что работа сил электростатического поля по замкнутому контуру равна нулю. Так как при движении заряда в одном направлении перемещение и действующая сила сонаправлены и работа положительна, то при движении заряда в обратном направлении перемещение и действующая сила противоположно направлены и работа отрицательна, суммарная работа будет равна нулю. В случае вихревого поля работа по замкнутому контуру будет отлична от нуля. Так при движении заряда вдоль замкнутой линии электрического поля, имеющего вихревой характер, работа на разных участках будет сохранять постоянный знак, поскольку сила и перемещение на разных участках траектории будут сохранять одинаковое направление друг относительно друга. Работа сил вихревого электрического поля по перемещению заряда вдоль замкнутого контура отлична от нуля, следовательно, вихревое электрическое поле может порождать электрический ток в замкнутом контуре, что совпадает с результатами эксперимента. Тогда можно утверждать то, что сила, действующая на заряды со стороны вихревого поля, равна произведению переносимого заряда на напряжённость этого поля.

Эта сила и есть сторонняя сила, совершающая работу. Работа этой силы, отнесённая к величине перенесённого заряда, - ЭДС индукции. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца и совпадает с направлением индукционного тока.

В неподвижном контуре, находящемся в переменном магнитном поле, возникает индукционный электрический ток. Само магнитное поле не может быть источником сторонних сил, поскольку оно может действовать только на упорядоченно движущиеся электрические заряды. Электростатического поля быть не может, поскольку оно порождается неподвижными зарядами. После предположения о том, что переменное во времени магнитное поле порождает электрическое поле, узнали, что это переменное поле носит вихревой характер, т. е. его линии замкнуты. Работа вихревого электрического поля по замкнутому контуру отлична от нуля. Сила, действующая на переносимый заряд со стороны вихревого электрического поля, равна величине этого переносимого заряда, умноженной на напряжённость вихревого электрического поля. Эта сила и является той сторонней силой, которая приводит к возникновению ЭДС в контуре. Электродвижущая сила индукции, т. е. отношение работы сторонних сил к величине переносимого заряда, равна взятой со знаком минус скорости изменения магнитного потока. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца.

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
  1. Электронный учебник физики ().
  2. Классная физика ().
  3. Xvatit.com ().
  1. Как объяснить тот факт, что удар молнии может расплавить предохранители, вывести из строя чувствительные электроприборы и полупроводниковые устройства?
  2. * При размыкании кольца в катушке возникла ЭДС самоиндукции 300 В. Какова напряжённость вихревого электрического поля в витках катушки, если их количество равно 800, а радиус витков - 4 см?

Правило Ленца (1883 г) индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Опыт Ленца

Описание опыта: замкнутое кольцо отталкивается от магнита, если его вдвигают в кольцо, и притягивается, если магнит выдвигают.

Движение кольца обусловлено магнитным полем индукционного тока.

Применение правила Ленца

Пример Магнит движется вправо (вдвигается в контур)

1. Определить направление силовых линий внешнего поля B .

2. Определить, увеличивается или уменьшается магнитный поток через

контур.

3. Определить направление индукционного магнитного поля B i

Если магнитный поток увеличивается, B i направлено против B , компенсируя это увеличение. Если магнитный поток уменьшается, B i направлено одинаково с B , компенсируя это уменьшение.

    По правилу буравчика определить направление индукционного тока.

Вихревое электрическое поле

Причина появления ЭДС индукции в замкнутом контуре при изменении магнитного потока заключается в возникновении вихревого электрического поля в любой области пространства, где существует переменное магнитное поле . – гипотеза Максвелла. Силовые линии вихревого полязамкнуты .

Перечислим свойства известных нам полей

1. Электростатическое, возникает везде, где есть эл. заряды. Силовые линии начинаются и заканчиваются на зарядах. Потенциальное, т.е. работа по замкнутому контуру равна нулю. напряженность, потенциал.

2. Поле тока – магнитное, вихревое, работа по замкнутому контуру не равна нулю. Ток течет в сторону убывания потенциала. Поле действует только на движущиеся заряды .

3. Вихревое электрическое поле. Действует на любые заряды. Работа по замкнутому контуру равна ЭДС индукции. ЭДС индукции определяется законом Фарадея.

    1. Самоиндукция. Индуктивность

Самоиндукцияявляется важным частным случаем

электромагнитной индукции, когда изменяющийся

магнитный поток, вызывающий ЭДС индукции,

создается током в самом контуре.

В любом контуре, по которому протекает ток,

возникает магнитное поле. Силовые линии этого поля

пронизывают все окружающее пространство, в том числе, пересекают площадь самого контура.

Магнитный поток, который вызван током в этом самом контуре, называется собственным магнитным потоком.

Поскольку магнитный поток пропорционален индукции магнитного поля, собственный магнитный поток пропорционален силе тока в контуре

Следовательно, можно ввести коэффициент пропорциональности

Коэффициент пропорциональности L между собственным магнитным потоком в контуре и силой тока в нем называется индуктивностью контура.

Индуктивность проводника зависит от размеров, формы проводника, магнитных свойств среды.

Единица измерения индуктивности называется Генри

Похожие статьи

  • Марс карандашом. Рисуем планету марс. Подготовка к работе

    На Руси слово планета начали использовать еще в одиннадцатом веке, но под планетой не подразумевалось то, что подразумевается сейчас. Для людей того времени планеты были связанны с чем-то божественным и мистическим. После того, как космос...

  • Измерения на грани фантастики

    Нобелевский комитет по физике Королевской академии наук Швеции назвал имена призеров 2017 года. Американцы, Райнер Вайсс, Бэрри Бэрриш и Кип Торн стали нобелевскими лауреатами за открытие гравитационных волн . Причем половину призовой...

  • Что делать и чем лечить, если прикусил язык до крови

    Маленькие дети частенько наносят себе самые разные повреждения по неосторожности. Одним из видов бытовых детских травм является травма языка. Как понять, что ребенок прикусил язык Дети до года могут прикусить язык, когда учатся ползать или...

  • Институт повышения квалификации и профессиональной переподготовки Спбгпу повышение квалификации

    Институт повышения квалификации и профессиональной переподготовки является структурным подразделением МГОУ, реализует программы дополнительного профессионального образования. Институт повышения квалификации и профессиональной...

  • Закон электромагнитной индукции

    Переменное магнитное поле порождает инду­цированное электрическое поле . Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это...

  • Николай Заболоцкий — Я воспитан природой суровой: Стих

    Стихотворение «Я воспитан природой суровой» было написано в 1953 г. зрелым поэтом. Вся жизнь Заболоцкого прошла в больших городах, Москве и Ленинграде, и только детство – на природе, в помещичьем имении близ Казани, где отец работал...