Формулировать 3 утверждения о солнечной системе. Обобщенные законы Кеплера. Движение в гравитационном поле

Планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце находится в одной из двух фокальных точек эллипса.

Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени.

Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546-1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона , закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам — гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним — и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Между сферами Марса и Земли — додекаэдр (двенадцатигранник); между сферами Земли и Венеры — икосаэдр (двадцатигранник); между сферами Венеры и Меркурия — октаэдр (восьмигранник). Получившаяся конструкция была представлена Кеплером в разрезе на подробном объемном чертеже (см. рисунок) в его первой монографии «Космографическая тайна» (Mysteria Cosmographica, 1596). — Примечание переводчика.

И. Кеплер всю свою жизнь пытался доказать, что наша Солнечная система - это какое-то мистическое искусство. Изначально он пытался доказать, что устройство системы имеет сходство с правильными многогранниками из древнегреческой геометрии. Во времена Кеплера было известно о существовании шести планет. Считалось, что они помещаются в хрустальные сферы. По утверждению ученого, эти сферы располагались таким образом, что между соседствующими точно вписываются многогранники правильной формы. Между Юпитером и Сатурном поместился куб, вписанный во внешнюю среду, в которую вписана сфера. Между Марсом и Юпитером находится тетраэдр, и т.п. После долгих лет наблюдений за небесными объектами, появились законы Кеплера, а свою теорию о многогранниках он опроверг.

Законы

На смену геоцентрической Птолемеевой системе мира пришла система гелиоцентрического типа, созданная Коперником. Еще позже, Кеплер выявил вокруг Солнца.

После многолетних наблюдений за планетами появились три закона Кеплера. Рассмотрим их в статье.

Первый

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна. После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Второй закон

Изучение движения тел позволяет ученому установить, что больше в тот период, когда она находится ближе к Солнцу, и меньше тогда, когда она находится на максимальном расстоянии от Солнца (это точки перигелия и афелия).

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади.

Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии - минимальную. На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Третий закон

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь. Этот закон ученый применил ко всем планетам нашей системы.

Объяснение законов

Законы Кеплера смогли объяснить только после открытия Ньютоном закона тяготения. По нему физические объекты принимают участие в гравитационном взаимодействии. Оно обладает всеобщей универсальностью, которой подвержены все объекты материального типа и физические поля. По утверждению Ньютона, два неподвижных тела действуют взаимно друг с другом с силой, пропорциональной произведению их веса и обратно пропорциональной квадрату промежутков между ними.

Возмущенное движение

Движением тел нашей Солнечной системы управляет сила притяжения желтого карлика. Если бы тела притягивались только силой Солнца, то планеты совершали бы движения вокруг него точно по законам движения Кеплера. Данный вид перемещения называют невозмущенным или кеплеровским.

В действительности все объекты нашей системы притягиваются не только нашим светилом, но и друг другом. Поэтому ни одно из тел не может перемещаться точно по эллипсу, гиперболе или по кругу. Если тело отклоняется во время движения от законов Кеплера, то это называется возмущениями, а само движение - возмущенным. Именно оно считается реальным.

Орбиты небесных тел не являются неподвижными эллипсами. Во время притяжения другими телами, происходит изменение эллипса орбиты.

Вклад И. Ньютона

Исаак Ньютон смог вывести из законов движения планет Кеплера закон всемирного тяготения. Для решения космическо-механических задач Ньютон использовал именно всемирное тяготение.

После Исаака прогресс в области небесной механики заключался в развитии математической науки, применяемой для решения уравнений, выражающих законы Ньютона. Этот ученый смог установить, что гравитация планеты определяется расстоянием до нее и массой, а вот такие показатели, как температура и состав, не оказывают никакого влияния.

В своей научной работе Ньютон показал, что третий кеплеровский закон не совсем точен. Он показал, что при подсчетах важно учитывать массу планеты, так как движение и вес планет связаны. Это гармоническая комбинация показывает связь между кеплеровскими законами и законом тяготения, выявленным Ньютоном.

Астродинамика

Применение законов Ньютона и Кеплера стало основой появления астродинамики. Это раздел небесной механики, изучающий движение космических тел, созданных искусственно, а именно: спутников, межпланетных станций, различных кораблей.

Астродинамика занимается расчетами орбит космических кораблей, а также определяет, по каким параметрам производить пуск, на какую орбиту выводить, какие необходимо провести маневры, планированием гравитационного воздействия на корабли. И это далеко не все практические задачи, которые ставятся перед астродинамикой. Все полученные результаты применяются при выполнении самых разных космических миссий.

С астродинамикой тесно связана небесная механика, которая изучает движение естественных космических тел под действием силы тяготения.

Орбиты

Под орбитой понимают траекторию движения точки в заданном пространстве. В небесной механике принято считать, что траектория тела в гравитационном поле другого тела обладает значительно большей массой. В прямоугольной системе координат, траектория может иметь форму конического сечения, т.е. быть представлена параболой, эллипсом, кругом, гиперболой. При этом фокус будет совпадать с центром системы.

На протяжении длительного времени считалось, что орбиты должны быть круглыми. Довольно долго ученые пытались подобрать именно круговой вариант перемещения, но у них не получалось. И только Кеплер смог объяснить, что планеты перемещаются не по круговой орбите, а по вытянутой. Это позволило открыть три закона, которые смогли описать движение небесных тел по орбите. Кеплер открыл следующие элементы орбиты: форму орбиты, ее наклон, положение плоскости орбиты тела в пространстве, размер орбиты, привязку по времени. Все эти элементы определяют орбиту независимо от ее формы. При расчетах основной координатной плоскостью может быть плоскость эклиптики, галактики, планетарного экватора и т.д.

Многочисленные исследования показывают, что по геометрической форме орбиты могут быть эллиптическими и округлыми. Есть деление на замкнутые и незамкнутые. По углу наклона орбиты к плоскости земного экватора, орбиты могут быть полярными, наклонными и экваториальными.

По периоду обращения вокруг тела, орбиты могут быть синхронными или солнечно-синхронными, синхронно-суточными, квазисинхронными.

Как говорил Кеплер, все тела имеют определенную скорость движения, т.е. орбитальную скорость. Она может быть постоянной на протяжении всего обращения вокруг тела или же изменяться.

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Закон открыт Ньютоном также в XVII веке (понятно, что на основе законов Кеплера). Второй закон Кеплера эквивалентен закону сохранения момента импульса. В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам. Немецкий астроном И. Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы.

В рамках классической механики выводятся из решения задачи двух тел предельным переходом → 0, где, - массы планеты и Солнца соответственно. Мы получили уравнение конического сечения с эксцентриситетомe и началом системы координат в одном из фокусов. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

3.1. Движение в гравитационном поле

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Другая формулировка этого закона: секториальная скорость планеты постоянна. Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T2 ~ R3, где Т – период обращения, R – радиус орбиты. В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной. При E = E1 rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. Установлены Иоганном Кеплером в начале XVII века как обобщение данных наблюдений Тихо Браге. Причем особенно внимательно Кеплер изучал движение Марса. Рассмотрим законы подробнее.

При с=0 и е=0 эллипс превращается в окуржность. Этот закон, равно как и первые два, применим не только к движению планет, но и к движению как их естественных, так и искуственных спутников. Кеплера не дана, так как в этом не было необходимости. Кеплера сформулирован Ньютоном так: квадраты сидерических периодов планет, умноженные на сумму масс Солнца и планеты, относятся как кубы больших полуосей орбит планет.

17 в. И. Кеплером (1571-1630) на основе многолетних наблюдений Т. Браге (1546-1601). Закон площадей.) 3. Квадраты периодов любых двух планет соотносятся как кубы их средних расстояний от Солнца. Наконец, он предположил, что орбита Марса эллиптическая, и увидел, что эта кривая хорошо описывает наблюдения, если Солнце поместить в один из фокусов эллипса. Затем Кеплер предположил (хотя и не мог точно доказать этого), что все планеты движутся по эллипсам, в фокусе которых находится Солнце.

КЕПЛЕРОВСКИЙ ЗАКОН ПЛОЩАДЕЙ. 1 й закон: каждая планета движется по эллиптич. Когда камень падает на Землю, он подчиняется закону всемирного тяготения. Эта сила прилагается к одному из взаимодействующих тел и направлена в сторону другого. К такому заключению, в частности, пришел И. Ньютон в своем мысленном бросании камней с высокой горы.Итак, Солнце искривляет движение планет, не давая им разлететься во все стороны.

Кеплер на основе результатов кропотливых и многолетних наблюдений Тихо Браге за планетой Марс смог определить форму его орбиты. Действие на Луну Земли и Солнца делают совершенно непригодными для расчетов ее орбиты законы Кеплера.

Форма эллипса и степень его сходства с окружностью характеризуется отношением, где - расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), - большая полуось. Таким образом можно утверждать, что, а следовательно и пропорциональная ей скорость заметания площади - константа. Солнца, а и - длины больших полуосей их орбит. Утверждение справедливо также для спутников.

Вычислим площадь эллипса, по которому движется планета. При этом взаимодействие между телами M1 и M2 не учитывается. Различие будет только в линейных размерах орбит (если тела разной массы). В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами.

Глава 3. Основы небесной механики

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства. С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым. Круговая и эллиптическая орбиты.

Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу. Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

В пределе при Δri → 0 эта сумма переходит в интеграл. Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6). Если скорость космического корабля равна υ1 = 7.9·103 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей.

Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона. 3. Наконец, Кеплер отметился еще и третьим законом планетных движений. Солнца, а и - массы планет. Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удаленная точка орбиты.

Законы Кеплера

В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства.

Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации – открытию закона всемирного тяготения.

С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринятаПтолемеем (~ 140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном И. Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Т. Браге .

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точкаP траектории называется перигелием , точка A , наиболее удаленная от Солнца – афелием . Расстояние между афелием и перигелием – большая ось эллипса.

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Второй закон Кеплера эквивалентен закону сохранения момента импульса . На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, заметенная радиус-вектором за малое время Δt , приближенно равна площади треугольника с основанием r Δθ и высотой r :

Здесь – угловая скорость (см. §1.6 ).

Момент импульса L по абсолютной величине равен произведению модулей векторов и

Поэтому, если по второму закону Кеплера то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом R , а другая – эллиптическая с большой полуосью a . Третий закон утверждает, что если R = a , то периоды обращения тел по этим орбитам одинаковы.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном , открывшим в 1682 году закон всемирного тяготения :

где M и m – массы Солнца и планеты, r – расстояние между ними, G = 6,67·10 –11 Н·м 2 /кг 2 – гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2 ~ R 3 , где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

Если T 2 ~ R 3 , то

Свойство консервативности гравитационных сил (см. §1.10 ) позволяет ввести понятие потенциальной энергии . Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m , находящегося на расстоянии r от неподвижного тела массы M , равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам . Работа гравитационной силы на малом перемещении есть:

В пределе при Δr i → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E 1 < 0 тело не может удалиться от центра притяжения на расстояние r > r max . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

При E = E 2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории .

При E = E 3 > 0 движение происходит по гиперболической траектории . Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

отсюда

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

отсюда

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ 1 = 7.9·10 3 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ 1 , но меньших υ 2 = 11,2·10 3 м/с, орбита корабля будет эллиптической. При начальной скорости υ 2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Обладал незаурядными математическими способностями. В начале XVII века в результате многолетних наблюдений за движением планет, а также на основе анализа астрономических наблюдений Тихо Браге, Кеплер открыл три закона, названных впоследствии его именем.

Первый закон Кеплера (закон элипсов). Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон равных площадей). Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, заметает собой равные площади.

Третий закон Кеплера (гармонический закон). Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Давайте рассмотри подробнее каждый из законов.

Первый закон Кеплера (закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Первый закон описывает геометрию траекторий планетарных орбит. Представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание. Получившейся фигурой будет эллипс. Форма эллипса и степень его сходства с окружностью характеризуется отношением e = c / a, где c — расстояние от центра эллипса до его фокуса (фокальное расстояние), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0, и, следовательно, e = 0 эллипс превращается в окружность.

Ближайшая к Солнцу точка P траектории называется перигелием. Точка A, наиболее удалённая от Солнца, — афелием. Расстояние между афелием и перигелием составляет большую ось эллиптической ор-биты. Расстояние между афелием А и перигелием Р составляет большую ось эллиптической ор-биты. Половина длины большой оси, полуось a, — это среднее расстояние от планеты до Солнца. Среднее расстояние от Земли до Солнца называется астрономической единицей (а. е.) и равно 150 млн км.


Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, занимает собой равные площади.

Второй закон описывает изменение скорости движения планет вокруг Солнца. С этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии. На рисунке, площади секторов выделенных синим, равны и соответственно время, за которое планета пройдет каждый сектор, тоже равно. Земля проходит перигелий в начале января, а афелий в начале июля. Второй закон Кеплера, закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит. Справедливо не только для планет, но и для их спутников.

Третий закон Кеплера позволяет сравнить орбиты планет между собой. Чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты и при движении по орбите ее полный оборот занимает больше времени. Так же с ростом расстояния от Солнца снижается линейная скорость движения планеты.

где T 1 , T 2 — периоды обращения планеты 1 и 2 вокруг Солнца; a 1 > a 2 — длины больших полуосей орбит планет 1 и 2. Полуось — это среднее расстояние от планеты до Солнца.

Познее Ньютон установил, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:

где М - масса Солнца, а m 1 и m 2 - масса планеты 1 и 2.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды. Так же зная расстояние планеты до Солнца, можно вычислить продолжительность года (время полного оборота вокруг Солнца). И наоборот, зная продолжительность года, можно вычислить расстояние планеты до Солнца.

Три закона движения планет открытые Кеплером дали точное объяснение неравномерности движения планет. Первый закон описывает геометрию траекторий планетарных орбит. Второй закон описывает изменение скорости движения планет вокруг Солнца. Третий закон Кеплера позволяет сравнить орбиты планет между собой. Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Похожие статьи

  • Мир культуры. Загадочный падишах. акбар великий Джалал уд-дин Мухаммад Акбар

    бакалавр истории по направлению "История"Волгоградский государственный университетмагистрант кафедры истории России ИИМОСТ ВолГУНаучный руководитель: Рамазанов С.П., доктор исторических наук, профессор, Волгоградский государственный...

  • Либерия Изобразительное искусство и ремесла

    Официальное название - Республика Либерия (Republic of Liberia).Расположена в западной части Африки. Площадь 111,4 тыс. км2, численность населения 3,3 млн чел. (2002). Государственный язык - английский. Столица - г. Монровия (1,3 млн чел.,...

  • Гибель колонны 245 мсп в аргунском ущелье

    Сложившееся в 1991 году двоевластие в Чечне, объявившей себя суверенной республикой, привело к противостоянию с федеральным правительством и внутренним конфликтам в борьбе за власть, закончившимся введением войск РФ в декабре 1994-го. Так...

  • Обозначение времени в английском языке?

    Всем кто интересуется изучением английского языка, приходилось сталкиваться со странными обозначениями p. m. и a. m , и вообще, везде, где упоминается о времени, почему-то используется всего 12 часовой формат . Наверное, для нас живущих...

  • Кто такие приписные крестьяне?

    В крестьянских сословиях исторического промежутка 18−19 вв. представлены самые разные социальные группы. Но на фоне остальных особое внимание обращают на себя посессионные и, конечно, приписные крестьяне. Именно они составляли в те времена...

  • Стихотворение Некрасова Н

    В августе, около "Малых Вежей", С старым Мазаем я бил дупелей.Как-то особенно тихо вдруг стало, На небе солнце сквозь тучу играло.Тучка была небольшая на нём, А разразилась жестоким дождём!Прямы и светлы, как прутья стальные, В землю...