Теория химического строения органических веществ бутлерова кратко. Теория химического строения органических соединений А.М. Бутлерова. А также другие работы, которые могут Вас заинтересовать

Требовали разрешения основного вопроса: являются ли беспорядочным нагромождением , удерживаемых силами притяжения, или же представляют собой частицы с определенным строением, которое можно установить, исследуя свойства . Жерара, с теми или иными оговорками признававшаяся большинством химиков того времени, отказывалась на изучения химических свойств решать вопрос о . А между тем в к этому времени уже накопились факты и обобщения, которые могли служить основой для решения этого вопроса. Так, например, дала чрезвычайно важное обобщение, заключавшееся в том, что при некоторые группы в неизменном виде переходят из исходных в , образующиеся при этих . , со своей стороны, в значительной мере способствовала изучению наиболее изменчивых частей и причин этой изменчивости.

Необычайно большое значение имело открытие элементов.

После открытия Франкланда стало ясно, что могут соединяться в только в отношениях, определяемых . В частности, было установлено, что четырехвалентен (Кекуле, Кольбе).

В 1858 г. Купер опубликовал на трех языках (английском, французском и немецком) статью «О новой химической теории», где он отбрасывает и высказывает точку зрения, согласно которой все особенности быть объяснены, если учитывать только два свойства : «избирательное сродство» (связь ) и «степень сродства» ( ).

Купер писал: «С моей точки зрения этих двух свойств достаточно для объяснения всего того, что характерно для : именно это я докажу ниже... В , состоящей из трех, четырех, пяти и т. д. и эквивалентного количества , и др., последние могут быть заменены другими элементами, в то время как образует взаимно-связанный узел. Это означает, что один связан с другим . Такое свойство придает , так сказать, своеобразную физиономию и дает возможность понять непонятный до этого факт наслоения в органических соединениях».

Придя таким образом к важному представлению о цепи углеродных , Купер выражает далее свои взгляды в формулах, которые, по его замыслу, должны дать картину строения соединений. В качестве примера его формул, которые были первыми конституционными формулами, можно привести следующие:


Из этих примеров видно, что Куперу удалось удивительно правильно передать конституцию этих соединений, а также некоторых более сложных и в то время мало исследованных (винная и ).

Однако все эти формулы были лишены опытного обоснования. Купер совершенно не ставил вопроса о возможности их экспериментальной проверки. Его формулы, как легко видеть, были основаны на формальной интерпретации понятий и связи , а отчасти даже на интуиции. Естественно, что при таком подходе невозможно избежать ошибок. Так, например, формулы , глицериновой и , данные Купером, уже неверны:


Таким образом, взгляды Купера, развитые им в его талантливой, интересной работе, не носят характера строгой теории.

Другая попытка изображения конституционными формулами была сделана в 1861 г. Лошмидтом. При построении своих формул Лошмидт рассматривал как мельчайшие материальные частицы, подвергающиеся действию сил притяжения и отталкивания. Эти силы при сближении уравновешиваются, и различные удерживаются друг около друга в некотором равновесном положении. Сферы действия атомных сил Ло-шмидт условно обозначал (например, и - простыми , кислорода-двойными, азота-тройными).

Формулы Лошмидта имели следующий вид:


Не пытаясь составить какое-либо представление о способе связи шести углеродных в , Лошмидт обозначал символом

В отличие от Купера, Лошмидт при выборе формул, кроме («поллентности» по его выражению), иногда руководствовался и химическими свойствами. Однако в целом метод вывода формул Лошмидта был абстрактным, а зачастую просто необоснованным. Так, не опираясь на химические данные, Лошмидт пытался вывести формулы таких , как , и т. п.

Естественно, что эти формулы оказались ошибочными.

Несмотря на то, что многие из предложенных Лошмидтом формул оказались удачными, работа его осталась почти не замеченной химиками того времени и не оказала сколько-нибудь существенного влияния на развитие теории .

А. М. Бутлеров выступил против положения о невозможности химическим путем; он показал, что в имеется определенная последовательность (химическое строение). Далее Бутлеров доказал, что можно установить, исследуя химические свойства , и, наоборот, зная строение, можно предвидеть многие свойства соединения. Бутлеров не только обосновал это положение уже имевшимся фактическим материалом, но и предсказал на его основе возможность существования новых , которые впоследствии были открыты им и другими химиками.

Основная идея теории А. М. Бутлерова сформулирована им в 1861 г. в статье «О химическом строении веществ». Он писал: «Исходя от мысли, что каждый химический , входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические , посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу».

Основой теории Бутлерова является идея о порядке химического взаимодействия в . Этот порядок химического взаимодействия не включает представления о механизме и физическом расположении . Эта важная особенность позволяет всегда опираться на нее при построении физической модели .

Установив понятие химического строения, А. М. Бутлеров дает новое определение природы : «химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением».

Таким образом, А. М. Бутлеров первый установил, что каждая имеет определенное химическое строение, что строение определяет свойства и что, изучая химические превращения , можно установить его строение.

Взгляды А. М. Бутлерова на значение химических вытекают из основных положений его теории. Бутлеров считал, что эти формулы должны быть не «типическими», «реакционными», а конституционными. В этом смысле для каждого возможна лишь одна рациональная формула, на которой можно судить о химических свойствах.

Что же касается способа написания , то Бутлеров справедливо считал этот вопрос второстепенным: «Помня, что дело не в форме, а в сущности, в понятии, в идее,- и принимая во внимание, что формулами, обозначающими , логически-необходимо выражать настоящее частицы, т. е. некоторые химические отношения, в ней существующие,- не трудно притти к убеждению, что всякий способ писания может быть хорош, лишь бы только он с удобством выражал эти отношения. Весьма естественно даже употреблять разные способы, предпочитая тот, который является более выразительным для данного случая. Например, С 2 Н 6 почти совершенно безразлично может быть изображен:

Однако же, при недостаточно-определенном понимании, иной способ писания может привести к недоумениям».

Этот замечательный факт недолго оставался единичным; вскоре были обнаружены многие другие , обладающие одинаковым составом, но разными свойствами. Открытое явление с 1830 г. начали называть (от греч. - составленный из одинаковых частей), а с одинаковым составом - атомов, заключающееся в том, что два или несколько не как на что-либо мертвое, неподвижное; мы принимаем, напротив, что оно одарено постоянным движением, заключенным в его самых мельчайших частичках, частные взаимные отношения которых подлежат постоянным переменам, суммируясь при этом в некоторый постоянный средний результат. Мы можем иметь здесь и постоянные изменения в химических частицах, составляющих массу в короткий срок обеспечили ей всеобщее признание. Однако вместе с тем появилась тенденция замолчать заслуги А. М. Бутлерова и представить творцами теории строения только Кекуле и Купера.

Уже несколько лет спустя после создания теории строения А. М. Бутлерову пришлось выступить в защиту своего приоритета, так как некоторые зарубежные химики, вначале не признававшие и даже не понимавшие его теории, впоследствии пытались приписать честь создания основных положений этой теории себе.

Решающую роль А. М. Бутлерова в создании ярко подчеркнул в 1868 г. великий русский ученый Д. И. Менделеев, рекомендуя А. М. Бутлерова в Петербургский университет. Менделеев писал, что Бутлеров «...вновь стремится, путем изучения химических превращений, проникнуть в самую глубь связей, разнородные элементы в одно целое, придает каждому из них прирожденную способность вступать в известное число соединений, а различие свойств приписывает различному способу связи элементов. Никто не проводил этих мыслей столь последовательно, как он, хотя они и проглядывали ранее... Для проведения того же способа воззрения через зсе классы Бутлеров издал в 1864 г. книгу: «Введение к полному изучению органической химии», в прошлом году переведенную на немецкий язык Бутлеров чтениями и увлекательностью идей образовал вокруг себя в Казани школу химиков, работающих в его направлении. Имена Марковникова, Мясникова, Попова, двух Зайцевых, Моргунова и некоторых других успели получить известность по многим открытиям, сделанным преимущественно благодаря самостоятельности бутлерозского направления. Могу лично засвидетельствовать, что такие ученые и , как Вюрц и Кольбе, считают Бутлерова одним из влиятельнейших в наше время двигателей теоретического направления химии».

А. М. Бутлеров справедливо считал, что будет развиваться по мере накопления нового фактического материала. Он писал: «...не могу не заметить, что те заключения, к которым ведет принцип химического строения, оказываются в тысячах случаев согласными с фактами. Как во всякой теории, и здесь, конечно, есть недостатки, несовершенства, - встречаются факты, которые не отвечают строго понятию о химическом строении. Разумеется, следует желать в особенности размножения таких именно фактов; факты, не объясняемые существующими теориями, наиболее дороги для науки, от их разработки следует по преимуществу ожидать ее развития в ближайшем будущем»).

Созданная А.М. Бутлеровым в 60-х годах XIX века теория химического строения органических соединений внесла необходимую ясность в причины многообразия органических соединений, вскрыла взаимосвязь между строением и свойствами этих веществ, позволила объяснить свойства уже известных и предсказать свойства ещё не открытых органических соединений.

Открытия в области органической химии (четырёхвалентность углерода, способность образования длинных цепочек) позволили Бутлерову в 1861 году сформулировать основные поколения теории:

1) Атомы в молекулах соединяются согласно их валентности (углерод-IV, кислород-II, водород-I), последовательность соединения атомов отражается структурными формулами.

2) Свойства веществ зависят не только от химического состава, но и от порядка соединения атомов в молекуле (химическое строение). Существуют изомеры , то есть вещества, имеющие одинаковый количественный и качественный состав, но разное строение, и, следовательно, разные свойства.

C 2 H 6 O: CH 3 CH 2 OH – этиловый спирт и CH 3 OCH 3 – диметиловый эфир

C 3 H 6 – пропен и циклопропан - CH 2 =CH−CH 3

3) Атомы взаимно влияют друг на друга, это следствие различной электроотрицательности атомов, образующих молекулы (O>N>C>H), и эти элементы оказывают различное влияние на смещение общих электронных пар.

4) По строению молекулы органического вещества можно предсказать его свойства, а по свойствам – определить строение.

Дальнейшее развитие ТСОС получила после установления строения атома, принятия концепции о типах химических связей, о видах гибридизации, открытие явления пространственной изомерии (стереохимия).


Билет №7 (2)

Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза.

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через расплав или раствор электролита

Сущность электролиза состоит в осуществлении за счет электрической энергии хим. Реакции- восстановления на катоде и окисления на аноде.

Катод(-) отдает электроны катионам, а анод(+) принимает электроны от анионов.

Электролиз расплава NaCl

NaCl-―> Na + +Cl -

K(-): Na + +1e-―>Na 0 | 2 проц. восстановления

A(+) :2Cl-2e-―>Cl 2 0 | 1 проц. окисления

2Na + +2Cl - -―>2Na+Cl 2

Электролиз водного раствора NaCl

В электролизе раствора NaC| в воде участвуют ионы Na + и Cl - , а также молекулы воды. При прохождении тока катионы Na + движутся к катоду, а анионы Cl - - к аноду. Но на катоде вместо ионов Na восстанавливаться молекулы воды:

2H 2 O + 2e-―> H 2 +2OH -

а на аноде окисляются хлорид-ионы:

2Cl - -2e-―>Cl 2

В итоге на катоде-водород, на аноде-хлор, а в растворе накапливается NaOH

В ионной форме: 2H 2 O+2e-―>H 2 +2OH-

2Cl - -2e-―>Cl 2

электролиз

2H 2 O+2Cl - -―>H 2 +Cl 2 +2OH -

электролиз

В молекулярной форме: 2H 2 O+2NaCl-―> 2NaOH+H 2 +Cl 2

Применение электролиза:

1)Защита металлов от коррозии

2)Получение активных металлов (натрия, калия, щелочно-земельных и др.)

3)Очистка некоторых металлов от примесей (электрическое рафинирование)

Билет №8 (1)


Похожая информация:

  1. A) Теория познания - наука, изучающая формы, способы и приемы возникновения и закономерности развития знания, отношение его к действительности, критерии его истинности.

Вклад в химию русского химика, академика Петербургской АН и профессора Петербургского университета, создателя теории химического строения изложен в этой статье.

Бутлеров Александр Михайлович вклад в химию:

Александр Михайлович в 1858 году открыл новый способ синтеза иодистого метилена. При этом он выполнил много задач и работ по его производным.

Химик смог синтезировать диацетат метилена и в процессе его омыления получил полимер формальдегида. На его основе в 1861 году Бутлеров впервые получил уротропин и метиленитан, осуществив при этом первый синтез сахаристого элемента.

Вклад в изучение химии Бутлерова полностью раскрылся в его показательном сообщении 1861 года. В нем он:

  1. Доказал несовершенство бытующих в то время теорий химии.
  2. Подчеркнул значение теории атомности.
  3. Определил понятие химического строения.
  4. Сформулировал 8 правил образования химических соединений.
  5. Бутлеров был первым, кто показал разницу между реакционной способностью разных соединений.

Александр Михайлович выдвинул идею о том, что атомы в молекулы взаимно влияют друг на друга. Он объяснил в 1864 году процесс изомерии большинства соединений органического происхождения. В процессе экспериментов на пользу своей идеи ученый исследовал строение бутилового третичного спирта и изобутилена. Также он осуществил полимеризацию этиленовых углеводородов.

Главная роль Бутлерова в химии состоит в том, что он является основателем учения о таутомерии, заложив его основы.

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

Другой пример:

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии.

Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями об электронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.



Согласно современным представлениям свойства органических соединений определяются:

· природой и электронным строением атомов;

· типом атомных орбиталей и характером их взаимодействия;

· типом химических связей;

· химическим, электронным и пространственным строением молекул.

Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики.

Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком. Например:

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

Энергия орбитали возрастает по мере удаления электрона от ядра атома (т.е. с увеличением номера электронного уровня).

Заполнение атомных орбиталей электронами

При заполнении атомных орбиталей электронами соблюдаются три основные правила.

Принцип устойчивости. АО заполняются электронами в порядке повышения их энергетических уровней:

1s < 2s < 2p < 3s < 3p < 4s < 3d ...

Принцип Паули. На одной АО могут находиться не более двух электронов с противоположными спинами.

Правило Хунда. На АО с одинаковой энергией, так называемых вырожденных орбиталях, электроны располагаются по одному с параллельными спинами.

Электронные конфигурации

В химических превращениях принимают участие электроны внешнего электронного уровня - валентные электроны.

Наиболее распространенные в органических соединениях элементы (элементы-органогены) относятся в основном ко 2-му (C, N, O) и 3-му (P, S, Cl) периодам Периодической системы. Валентными электронами этих элементов являются 2s-, 2р- и 3s-, 3р-электроны, соответственно.

Валентные электроны элементов-органогенов

36) Алканы , имея общую формулу С n H 2n+2 , представляют собой ряд родственных соединений с однотипной структурой, в котором каждый последующий член отличается от предыдущего на постоянную группу атомов (-CH 2 -). Такая последовательность соединений называется гомологическим рядом (от греч. homolog - сходный), отдельные члены этого ряда – гомологами, а группа атомов, на которую различаются соседние гомологи, – гомологической разностью.

Гомологический ряд алканов легко составить, прибавляя каждый раз к предыдущей цепочке новый атом углерода и дополняя его оставшиеся валентности до 4-х атомами водорода. Другой вариант – добавление в цепь группы -СН 2

CH 4 или Н-СН 2 -Н – первый член гомологического ряда – метан (содержит 1 атом C);

CH 3 -CH 3 или Н-СН 2 -СН 2 -Н – 2-й гомолог – этан (2 атома С);

CH 3 -CH 2 -CH 3 или Н-СН 2 -СН 2 -СН 2 -Н – 3-й гомолог – пропан (3 атома С);

CH 3 -CH 2 -CH 2 -CH 3 или Н-СН 2 -СН 2 -СН 2 -СН 2 -Н – бутан (4 атома С).

Суффикс -ан является характерным для названия всех алканов. Начиная с пятого гомолога, название алкана образуется из греческого числительного, указывающего число атомов углерода в молекуле, и суффикса -ан: пентан С 5 Н 12 , гексан С 6 Н 14 , гептан С 7 Н 16 , октан

Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы, приведенные в разделе 2. Из этих формул видно, что в алканах имеются два типа химических связей:

С–С и С–Н.

Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:

Электронные и структурные формулы отражают химическое строение, но не дают представления о пространственном строении молекул, которое существенно влияет на свойства вещества.

Пространственное строение, т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.

Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации (часть I, раздел 4.3). Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp 3 -гибридизации (часть I, раздел 4.3.1). В этом случае каждая из четырех sp 3 -гибридных АО углерода участвует в осевом (σ-) перекрывании с s-АО водорода или с sp 3 -АО другого атома углерода, образуя σ-связи С-Н или С-С.

Четыре σ-связи углерода направлены в пространстве под углом 109о28", что соответствует наименьшему отталкиванию электронов. Поэтому молекула простейшего представителя алканов – метана СН 4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:

Валентный угол Н-С-Н равен 109о28". Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.

Для записи удобно использовать пространственную (стереохимическую) формулу.

В молекуле следующего гомолога – этана С 2 Н 6 – два тетраэдрических sp 3 -атома углерода образуют более сложную пространственную конструкцию:

Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы. Это можно показать на примере н-бутана или н-пентана:

37) Мета́н (лат. Methanum) - простейший углеводород, бесцветный газ без запаха, химическая формула - CH 4 . Малорастворим в воде, легче воздуха. При использовании в быту, промышленности в метан обычно добавляют одоранты со специфическим «запахом газа». Сам по себе метан не токсичен и не опасен для здоровья человека. Обогащение одорантами делается для того, чтобы человек вовремя заметил утечку газа.

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и кальция) или безводного гидроксида натрия с ледяной уксусной кислотой.

2NaOH+CH 3 COOH→(t)Na 2 CO 3 +CH 4 +H 2 O

Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Возможно получение метана сплавлением ацетата натрия с гидроксидом натрия:

CH 3 COONa + NaOH → CH 4 + Na 2 CO 3

Химические свойства

Горит в воздухе голубоватым пламенем, при этом выделяется энергия около 39 МДж на 1 м³. С воздухом образует взрывоопасные смеси при объёмных концентрациях от 5 до 15 процентов. Точка замерзания -184С (при нормальном давлении)

Вступает с галогенами в реакции замещения (например, CH 4 + 3Cl 2 = CHCl 3 + 3HCl), которые проходят по свободно радикальному механизму:

CH 4 + ½Cl 2 = CH 3 Cl (хлорметан)

CH 3 Cl + ½Cl 2 = CH 2 Cl 2 (дихлорметан)

CH 2 Cl 2 + ½Cl 2 = CHCl 3 (трихлорметан)

CHCl 3 + ½Cl 2 = CCl 4 (тетрахлорметан)

Выше 1400 °C разлагается по реакции:

2CH 4 = C 2 H 2 + 3H 2

Окисляется до муравьиной кислоты при 150-200 °C и давлении 30-90 атм по цепному радикальному механизму:

CH 4 + 3[O] = HCOOH + H 2 O

Применение метана

1) Топливо.

2) Продукты хлорирования используются в огнетушителях, а так же как снотворное, или растворитель.

3) Производство продукта дегидрирования-ацетилена.

4) Продукт конверсии-синтез-газ. Используется для производства метанола и формальдегида, а следовательно и полимеров, медикаментов и денатурирующих и дезинфицирующих материалов. Также из синтез-газа изготавливаются аммиак и удобрения.

38) Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными.

Алкены образуют гомологический ряд с общей формулой C n H 2n .

Номенклатура. Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан - этилен, пропан - пропилен и т.д.

этен (этилен) C 2 H 4

пропен C 3 H 6

бутен C 4 H 8

пентен C 5 H 10

гексен C 6 H 12

гептен C 7 H 14

октен C 8 H 16

нонен C 9 H 18

децен C 10 H 20

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан - алкен, этан - этен, пропан - пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:

H 3 C-CH 2 -C-CH==CH 2 H 3 C-C==CH-CH-CH 2 -CH 3

3,3-диметилпентен-1 2,4-диметилгексен-2

Иногда используют и рациональные названия. В этом случае все алкеновые углеводороды рассматривают как замещенные этилена:

Н 3 С-СН==СН-CH 2 -СН 3

метилэтилэтилен

Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

Н 2 С==СН- - винил (этенил)

Н 2 С==CН-СН 2 - аллил (пропенил-2)

Изомерия.

Для алкенов характерны два вида структурной изомерии. Кроме изомерии, связанной со строением углеродного скелета (как у алканов), появляется изомерия, зависящая от положения двойной связи в цепи. Это приводит к увеличению числа изомеров в ряду алкенов.

Первые два члена гомологического ряда алкенов - этилен и пропиле) - изомеров не имеют и их строение можно выразить так:

H 2 C==CH 2 H 2 C==CH-CH 3

этилен пропилен

(этен) (пропен) CH 3

Для углеводорода С 4 H 8 возможны три изомера: |

H 2 C==CH-CH 2 -CH 3 H 3 C-CH==CH-CH 3 H 2 C==C- CH 3

бутен-1 бутен-2 2-метилпропен-1

Первые два отличаются между собой положением двойной связи углеродной цепи, а третий - характером цепи (изостроение).

Однако в ряду этиленовых углеводородов помимо структурно изомерии возможен еще один вид изомерии - цис-, транс-изомерия (геометрическая изомерия). Такая изомерия характерна для соединений с двойной связью. Если простая s-связь допускает свободное вращение отдельных звеньев углеродной цепи вокруг своей оси, то вокруг двойной связи такого вращения не происходит. Это и является причиной появления геометрических

(цис-, транс-) изомеров.

Геометрическая изомерия - один из видов пространственной изомерии.

Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами, а по разную - транс-изомерами:

H 3 C CH 3 H 3 C H

цис-бутен-2 транс-бутен-2

Цис- и транс-изомеры отличаются не только пространственным строением, но и многими физическими и химическими свойствами. Транс-изомеры более устойчивы, чем цис-изомеры.

гибридизация одной s- и двух р-орбиталей (sp2-гибридизация),

как видно, у каждого атома углерода есть σ-связи, образованные sp2-гибридными облаками, кроме того, между атомами углерода образуется π-связь за счет перекрывания p-орбиталей. Таким образом, двойные углерод-углеродные связи состоят из одной σ- и одной π-связи.

39) Этилен – в природе этот газ практически не встречается: он образуется в незначительных количествах в тканях растений и животных как промежуточный продукт обмена веществ. Попутно это - самое производимое органическое соединение в мире. Газ этилен служит сырьем для получения полиэтилена.

Свойства этилена

Этилен (другое название - этен) - химическое соединение, описываемое формулой С 2 H 4 . В природе этилен практически не встречается. Это бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0°C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах.

Этилен является простейшим алкеном (олефином). Содержит двойную связь и поэтому относится к ненасыщенным соединениям. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном.

Химические свойства

а) Реакции присоединения

Запомните! Реакции замещения свойственны алканам и высшим циклоалканам, имеющим только одинарные связи, реакции присоединения – алкенам, диенам и алкинам, имеющим двойные и тройные связи.

Качественная реакция: «мягкое окисление (в водном растворе

– алкены обесцвечивают раствор перманганата калия (реакция Вагнера)

Применение алкенов

1 – получение горючего с высоким октановым числом;

2 – пластмасс;

3 – взрывчатых веществ;

4 – антифризов;

5 – растворителей;

6 – для ускорения созревания плодов;

7 – получение ацетальдегида;

8 – синтетического каучука.

40) Мономеры (от моно... и греч. méros - часть), низкомолекулярные вещества, молекулы которых способны вступать в реакцию (полимеризацию или поликонденсацию) друг с другом или с молекулами других веществ с образованием полимера. Например АМИНОКИСЛОТА это мономер белка, а пропилен это мономерная форма, из которой получают полипропилен.

Полимеры (от греч. polymeres - состоящий из многих частей, многообразный), химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация. По происхождению П. делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные П., например каучук натуральный); цепи с разветвлением (разветвленные П., например амилопектин); трёхмерной сетки (сшитые П., например отверждённые эпоксидные смолы). П., молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.

Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.

CH 2 -CHCl-CH 2 -CHCl-CH 2 -CHCl-CH 2 -CHCl-CH 2 -CHCl-...

поливинилхлорид

В формуле макромолекулы это звeно обычно выделяют скобками:

По строению структурного звeна макромолекулы можно сказать о том, какой мономер использован в синтезе данного полимера и, наоборот, зная формулу мономера, нетрудно представить строение структурного звeна.

Строение структурного звена соответствует строению исходного мономера, поэтому его называют также мономерным звеном.

Степень полимеризации - это число, показывающее сколько молекул мономера соединилось в макромолекулу.

В формуле макромолекулы степень полимеризации обычно обозначается индексом "n" за скобками, включающими в себя структурное (мономерное) звено:

Для синтетических полимеров, как правило, n ≈ 102-104; а самые длинные из известных природных макромолекул – ДНК (полинуклеотидов) – имеют степень полимеризации n ≈ 109-1010.

Молекулярная масса, молекулярный вес, значение массы молекулы, выраженное в атомных единицах массы. Практически Молекулярная масса равна сумме масс всех атомов, входящих в состав молекулы. За Молекулярная масса часто принимают среднюю массу молекул данного вещества, найденную с учётом относительного содержания изотопов всех элементов, входящих в его состав.

Молекулярная масса являются важной характеристикой высокомолекулярных соединений - полимеров, определяющей их физические (и технологические) свойства. Макромолекулы полимеров образуются повторением сравнительно простых звеньев (групп атомов); число мономерных звеньев, входящих в состав различных молекул одного и того же полимерного вещества, различно, вследствие чего Молекулярная масса макромолекул таких полимеров также неодинакова. Поэтому при характеристике полимеров обычно говорят о среднем значении Молекулярная масса; эта величина даёт представление о среднем числе звеньев в молекулах полимера (о степени полимеризации).

Полимеризация – реакция образования высокомолекулярного соединения (полимера) путем последовательного присоединения молекул низкомолекулярного вещества (мономера) по схеме:

Число n называется степенью полимеризации.

Реакции полимеризации алкенов идут в результате присоединения по кратным связям:

ПОЛИКОНДЕНСАЦИЯ (далее П.) - это процесс получения полимеров из би- или полифункциональных соединений (мономеров), сопровождающийся выделением побочного низкомолекулярного вещества (воды, спирта, галогеноводорода и др.). П. осуществляют тремя различными способами: в расплаве, когда смесь исходных соединений длительно нагревают при температуре, на 10-20 °С превышающей температуру плавления (размягчения) образующегося полимера; в растворе, когда мономеры находятся в одной жидкой фазе в растворённом состоянии; на границе раздела двух несмешивающихся жидкостей, в каждой из которых растворено одно из исходных соединений (межфазная П.).

Процессы П. играют важную роль в природе и технике. П. или подобные ей реакции лежат в основе биосинтеза наиболее важных биополимеров - белков, нуклеиновых кислот, целлюлозы и др. П. широко используется в промышленности для получения полиэфиров (полиэтилентерефталата, поликарбонатов, алкидных смол), полиамидов, феноло-формальдегидных смол, мочевино-формальдегидных смол, некоторых кремнийорганических полимеров и др.

41) Алкадиены , как следует из их названия, представляют собой ненасыщенные углеводороды, содержащие в своем углеродном скелете две двойные связи. Их также называют диеновыми угле-водородами. Общая формула гомологического ряда алкадиенов - С n Н 2n-2 . Следует иметь в виду, что такая же формула соответствует и другим гомологическим рядам - например, алкинов или циклоалкенов.

По взаимному раположению двойных связей и химическим свойствам диены делятся на три группы: 1. Диены с соседним расположением двойных связей называют диенами кумулированными связями. Эти соединения малоустойчивы и легко перегруппировыватся в алкины.

2. Диены, у которых двойные связи разделены более чем одной простой связью, называются диенами с изолированными связями. Их реакции ничем не отличаются от реакций с той лишь разницей, что в реакции может вступить одна или две связи.

3.Диены с 1,3-полрожением двойных связей (двойные связи разделены одной простой) несколько отличаются по свойствам от алкенов и важны с практической точки зрения. Это послужило причиной обособления их в отдельную группу. такие диены называют диенами с сопряжёнными связями. Обычно, когда речь идёт просто о диенах, подразумевается 1,3-диены.

В настоящее время основным способом получения этого вещества является дегидрирование бутана (получаемого из нефти или природного газа) над катализатором, представляющим собой смесь оксидов хрома (III) и алюминия

Исторически имеет огромное значение предложенный в 1932 году С. В. Лебедевым метод получения бутадиена из этилового спирта каталитической реакцией дегидрирования-дегидратации. Катализатором этой реакции является смесь на основе оксидов цинка и алюминия:

Представляет собой мономер натурального каучука и может быть получен из него термическим разложением без доступа воздуха. В промышленности получается (аналогично дивинилу) из легких фракций продуктов крекинга нефти процессом дегидрирования на оксидных катализаторах:

Химические свойства

1. Реакция электрофильного присоединения(АЕ) более характерна для алкадиенов.

Главная особенность химии сопряженных диенов в том, что на первой ступени образуется не только обычный продукт 1,2- присоединения, но и продукт 1,4-присоединения (см. выше).

Преимущественное протекание реакции по тому или иному пути зависит от конкретных условий. При избытке брома образуется тетрабромид:

Аналогичным образом присоединяются хлор, галогеноводороды, вода (в присутствии сильных кислот) и некоторые другие вещества.

2. Полимеризация диеновых углеводородов (см. Полимеризация). Полимеризация алкадиенов может происходить по катионному, радикальному, координационному, анионному (под действием натрия) механизмам, приводя к образованию полимеров, обладающих высокой эластичностью и напоминающих природный каучук. Получение синтетического каучука - основная область применения диеновых углеводородов (главным образом бутадиена и изопрена). Натуральный каучук - полимер изопрена: n=1000-3000

Синтетический каучук в промышленном масштабе впервые был получен в 1932 г. в нашей стране по способу С. В. Лебедева:

Алкадиены используются в основном для синтеза синтетических каучуков.

42) С изобретением конвейерного метода сборки автомобилей потребность в резине стала настолько велика, что возник вопрос об ограниченности производства природного сырья. Надо было искать альтернативные источники каучука. Поэтому неудивительно, что в конце 19 - первой половине 20 в. во многих странах исследовались строение каучука, его физические и химические свойства, эластичность, процесс вулканизации.

Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах

Теория химического строения органических соединений А. М. Бутлерова

Подобно тому, как для неорганической химии основой развития являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, для органической химии основополагающей стала теория строения органических соединений А. М. Бутлерова.

Основным постулатом теории Бутлерова является положение о химическом строении вещества , под которым понимается порядок, последовательность взаимного соединения атомов в молекулы, т.е. химическая связь.

Под химическим строением понимают порядок соединения атомов химических элементов в молекуле согласно их валентности.

Этот порядок может быть отображен при помощи структурных формул, в которых валентности атомов обозначаются черточками: одна черточка соответствует единице валентности атома химического элемента. Например, для органического вещества метана, имеющего молекулярную формулу $СН_4$, структурная формула выглядит так:

Основные положения теории А. М. Бутлерова

  1. Атомы в молекулах органических веществ связаны друг с другом согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом, образуя различные цепи.
  2. Свойства веществ определяются не только их качественным и количественным составом, но и порядком соединения атомов в молекуле, т. е. химическим строением вещества.
  3. Свойства органических соединений зависят не только от состава вещества и порядка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп атомов друг на друга.

Теория строения органических соединений является динамичным и развивающимся учением. По мере развития знаний о природе химической связи, о влиянии электронного строения молекул органических веществ стали пользоваться, кроме эмпирических и структурных, электронными формулами. В таких формулах указывают направление смещения электронных пар в молекуле.

Квантовая химия и химия строения органических соединений подтвердили учение о пространственном направлении химических связей (цис- и трансизомерия ), изучили энергетические характеристики взаимных переходов у изомеров, позволили судить о взаимном влиянии атомов в молекулах различных веществ, создали предпосылки для прогнозирования видов изомерии и направления и механизма протекания химических реакций.

Органические вещества имеют ряд особенностей:

  1. В состав всех органических веществ входят углерод и водород, поэтому при горении они образуют углекислый газ и воду.
  2. Органические вещества построены сложно и могут иметь огромную молекулярную массу (белки, жиры, углеводы).
  3. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам гомологов.
  4. Для органических веществ характерной является изомерия.

Изомерия и гомология органических веществ

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомерия - это явление существования разных веществ - изомеров с одинаковым качественным и количественным составом, т.е. с одинаковой молекулярной формулой.

Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле; стереоизомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

Выделяют следующие разновидности структурной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных классов органических соединений (межклассовую изомерию).

Структурная изомерия

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле $С_4Н_{10}$ соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода $С_5Н_{12}$ возможны три изомера: пентан, изопентан и неопентан:

$СН_3-СН_2-{СН_2}↙{пентан}-СН_2-СН_3$

С увеличением числа атомов углерода в молекуле число изомеров быстро растет. Для углеводорода $С_{10}Н_{22}$ их уже $75$, а для углеводорода $С_{20}Н_{44}$ - $366 319$.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы:

$CH_2={CH-CH_2}↙{бутен-1}-CH_3$ $CH_3-{CH=CH}↙{бутен-2}-CH_3$

${CH_3-CH_2-CH_2-OH}↙{н-пропиловый спирт(пропанол-1)}$

Изомерия различных классов органических соединений (межклассовая изомерия) обусловлена различным положением и сочетанием атомов в молекулах веществ, имеющих одинаковую молекулярную формулу, но принадлежащих к разным классам. Так, молекулярной формуле $С_6Н_{12}$ соответствует ненасыщенный углеводород гексен-1 и циклический углеводород циклогексан:

Изомерами являются углеводород, относящийся к алкинам, - бутин-1 и углеводород с двумя двойными связями в цепи бутадиен-1,3:

$CH≡C-{CH_2}↙{бутин-1}-CH_2$ $CH_2={CH-CH}↙{бутадиен-1,3}=CH_2$

Диэтиловый эфир и бутиловый спирт имеют одинаковую молекулярную формулу $С_4Н_{10}О$:

${CH_3CH_2OCH_2CH_3}↙{\text"диэтиловый эфир"}$ ${CH_3CH_2CH_2CH_2OH}↙{\text"н-бутиловый спирт (бутанол-1)"}$

Структурными изомерами являются аминоуксусная кислота и нитроэтан, отвечающие молекулярной формуле $С_2Н_5NO_2$:

Изомеры этого типа содержат различные функциональные группы и относятся к разным классам веществ. Поэтому они отличаются по физическим и химическим свойствам значительно больше, чем изомеры углеродного скелета или изомеры положения.

Пространственная изомерия

Пространственная изомерия подразделяется на два вида: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, содержащих двойные связи, и циклических соединений. Так как свободное вращение атомов вокруг двойной связи или в цикле невозможно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис -положение), либо по разные стороны (транс -положение). Обозначения цис- и транс- обычно относят к паре одинаковых заместителей:

Геометрические изомеры различаются по физическим и химическим свойствам.

Оптическая изомерия возникает, если молекула несовместима со своим изображением в зеркале. Это возможно, когда у атома углерода в молекуле четыре различных заместителя. Этот атом называют асимметрическим. Примером такой молекулы является молекула $α$-аминопропионовой кислоты ($α$-аланина) $СН_3СН(NH_2)COOH$.

Молекула $α$-аланина ни при каком перемещении не может совпасть со своим зеркальным отражением. Такие пространственные изомеры называются зеркальными, оптическими антиподами , или энантиомерами. Все физические и практически все химические свойства таких изомеров идентичны.

Изучение оптической изомерии необходимо при рассмотрении многих реакций, протекающих в организме. Большинство этих реакций идет под действием ферментов - биологических катализаторов. Молекулы этих веществ должны подходить к молекулам соединений, на которые они действуют, как ключ к замку, следовательно, пространственное строение, взаимное расположение участков молекул и другие пространственные факторы имеют для течения этих реакций большое значение. Такие реакции называются стереоселективными.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов - обмена веществ.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность $CH_2$. Например: $CH_4$ - метан, $C_2H_6$ - этан, $C_3H_8$ - пропан, $C_4H_{10}$ - бутан и т. д.

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа.

Типы связей в молекулах органических веществ.

В органических соединениях углерод всегда четырехвалентен. В возбужденном состоянии в его атоме происходит разрыв пары $2s^3$-электронов и переход одного из них на р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.

На основании приведенной электронной формулы валентного уровня атома углерода можно было бы ожидать, что на нем находится один $s$-электрон (сферическая симметричная орбиталь) и три $р$-электрона, имеющих взаимно перпендикулярные орбитали ($2р_х, 2р_у, 2p_z$-орбиталь). В действительности же все четыре валентных электрона атома углерода полностью эквивалентны и углы между их орбиталями равны $109°28"$. Кроме того, расчеты показывают, что каждая из четырех химических связей углерода в молекуле метана ($СН_4$) на $25%$ является $s-$ и на $75%$ - $p$-связью, т.е. происходит смешивание $s-$ и $р-$состояний электронов. Это явление называют гибридизацией, а смешанные орбитали - гибридными.

Атом углерода в $sp^3$-валентном состоянии имеет четыре орбитали, на каждой из которых находится по одному электрону. В соответствии с теорией ковалентной связи он имеет возможность образовывать четыре ковалентные связи с атомами любых одновалентных элементов ($СН_4, CHCl_3, CCl_4$) или с другими атомами углерода. Такие связи называются $σ$-связями. Если атом углерода имеет одну $С-С$ связь, то он называется первичным ($Н_3С-СН_3$), если две - вторичным ($Н_3С-СН_2-СН_3$), если три - третичным (), а если четыре - четвертичным ().

Одной из характерных особенностей атомов углерода является их способность образовывать химические связи за счет обобщения только $р$-электронов. Такие связи называются $π$-связями. $π$-связи в молекулах органических соединений образуются только в присутствии $σ$-связей между атомами. Так, в молекуле этилена $Н_2С=СН_2$ атомы углерода связаны $σ-$ и одной $π$-связью, в молекуле ацетилена $НС=СН$ - одной $σ-$ и двумя $π$-связями. Химические связи, образовавшиеся с участием $π$-связей, называются кратными (в молекуле этилена - двойная , в молекуле ацетилена - тройная ), а соединения с кратными связями - ненасыщенными.

Явление $sp^3$-, $sp^2$- и $sp$ - гибридизации атома углерода.

При образовании $π$-связей изменяется гибридное состояние атомных орбиталей атома углерода. Так как образование $π$-связей происходит за счет р-электронов, то в молекулах с двойной связью электроны будут иметь $sp^2$-гибридизацию (была $sp^3$, но один р-электрон отходит на $π$-орбиталь), а с тройной - $sp$-гибридизацию (два р-электрона отошли на $π$-орбиталь). Характер гибридизации изменяет направленность $σ$-связей. Если при $sp^3$-гибридизации они образовывают пространственно разветвленные структуры ($а$), то при $sp^2$-гибридизации все атомы лежат в одной плоскости и углы между $σ$-связями равны $120°$(б), а при $sp$-гибридизации молекула линейна (в):

При этом оси $π$-орбиталей перпендикулярны оси $σ$-связи.

Как $σ$-, так и $π$-связи являются ковалентными, значит, должны характеризоваться длиной, энергией, пространственной направленностью и полярностью.

Характеристики одинарных и кратных связей между атомами С.

Радикал. Функциональная группа.

Одной из особенностей органических соединений является то, что в химических реакциях их молекулы обмениваются не отдельными атомами, а группами атомов. Если эта группа атомов состоит только из атомов углерода и водорода, то она называется углеводородным радикалом , если же она имеет атомы других элементов, то она называется функциональной группой . Так, например, метил ($СН_3$-) и этил ($С_2Н_5$-) являются углеводородными радикалами, а оксигруппа (-$ОН$), альдегидная группа (), нитрогруппа (-$NO_2$) и т. д. являются функциональными группами спиртов, альдегидов и азотсодержащих соединений соответственно.

Как правило, функциональная группа определяет химические свойства органического соединения и поэтому является основой их классификации.

Похожие статьи

  • Каспийское море затопит все нижнее поволжье Апокалипсис по Ньютону

    Новый Всемирный потоп, как утверждают ученые NASA, наступит уже через 60 лет — в 2075 году. Изменения внутренней структуры льда в полярных шапках Земли, которые говорят о скором начале его таяния, подтверждают и наблюдения полярников. По...

  • Даша севастопольская - легенда крымской войны

    одна из первых военных сестёр милосердия, героиня обороны Севастополя в Крымскую войну 1853-1856 гг Биография Дарья Михайлова родилась в селе Ключищи возле Казани в семье матроса 10-го ластового экипажа Лаврентия Михайлова. В 1853 году её...

  • Методы изучения английского языка

    Английский язык – самый востребованный язык в мире. Чтобы читать Шекспира в оригинале, путешествовать без языковых барьеров, необходимо изучать английский. Именно на нем ведется большинство международных переговоров. Также знание...

  • Как написать отличный рассказ

    Наблюдайте за окружающим миром. Если вы хотите написать хороший рассказ или даже повесть, то всегда внимательно прислушивайтесь и смотрите по сторонам, чтобы найти вдохновение! Уже скоро вы поймете, о чем будет ваш рассказ! Интересуйтесь...

  • Каталоги как средство приобщения детей к чтению в библиотеке

    Валентина Власкина В век стремительного развития компьютерных технологий не для кого, не секрет, что наши дети и родители очень мало уделяют внимания чтению книг . Процесс общения ребенка с книгой – это процесс становления в нем...

  • Басня свинья под дубом - крылов иван андреевич

    Из-под пера великого мастера Ивана Андреевича Крылова вышло огромное множество непревзойденных и поучительных историй. Целью своего высмеивания человеческих пороков он считал очищение мира. Его произведения актуальны и в наше современное...