Исследование функции переменного помощью производных. Исследование функции с помощью производной. Вопросы для самопроверки

Точка называется точкой максимума (минимума) функции , если существует такая окрестность точки , что для всех из этой окрестности выполняется неравенство ().

Точки максимума и минимума функции называются точками экстремума (рис. 25).

Теорема 3.9 (необходимое условия существования точек экстремума). В критических точках 1-го рода производная функции либо

равна нулю, либо не существует

Критические точки 1-го рода принято называть просто критическими точками.

Критические точки, в которых производная функции равна нулю, называются точками стационарности . Критические точки, в которых функция непрерывна, но не дифференцируема называются угловыми точками . Например, функция в точке непрерывна, но производной не имеет, так как в этой точке к графику функции можно провести бесконечное множество касательных (рис. 26). Данный случай можно рассматривать в качестве подтверждения тому, что обратное утверждение к теореме 3.3 является неверным.

Функция называется возрастающей на некотором интервале , если на этом интервале большему значению аргумента соответствует большее значение переменной , и убывающей , если большему значению аргумента соответствует меньшее значение переменной .

Для дальнейшего исследования критические точки помещают на числовую ось, которая делится этими точками на интервалы, после чего поверяют выполнение следующих достаточных условий.

Теорема 3.10 (достаточное условие возрастания и убывания функции). Если на некотором интервале функция дифференцируема и при этом ее производная положительна (отрицательна), то функция на данном интервале возрастает (убывает)

Теорема 3.11 (достаточное условие существования точек экстремума функции). Если функция непрерывна и дифференцируема в некоторой окрестности критической точки и при переходе через нее производная меняет знак с плюса на минус, то точка является точкой максимума; если с минуса на плюс, то точка является точкой минимума функции

Те критические точки функции, для которых достаточное условие не выполняется, остаются просто критическими точками 1-го рода.

Критические точки 1-го рода, в которых производная не существует, делятся на два класса:

– точки, в которых функция непрерывна (при выполнении для них теоремы 3.11 функция в данных точках имеет «острый» экстремум), это угловые точки;

– точки, в которых функция терпит разрыв (всегда переходят в класс критических точек 2-го рода).

Но проведенное таким образом исследование, не дает ответ на очень важный вопрос: как возрастает (убывает) функция – выпукло или вогнуто? Ответ на поставленный вопрос дает дальнейшее исследование функции с помощью второй производной. Дадим ряд необходимых определений.

Функция называется выпуклой (вогнутой ) на некотором интервале , если касательная, проведенная к графику функции в каждой точке этого интервала, лежит выше (ниже) графика функции.

Точки, отделяющие участки выпуклости от участков вогнутости функции, называются ее точками перегиба (рис. 27).

Теорема 3.12 (необходимое условие существования точек перегиба) . В критических точках 2-го рода вторая производная функции либо равна нулю, либо не существует

Для дальнейшего исследования критические точки 2-го рода помещают на числовую ось, которая делится этими точками на интервалы, после чего поверяют выполнение следующих достаточных условий.

Теорема 3.13 (достаточное условие выпуклости и вогнутости функции). Если на некотором интервале функция дважды дифференцируема и при этом ее вторая производная положительна (отрицательна), то функция на данном интервале вогнута (выпукла)

Те критические точки функции, для которых достаточное условие не выполняется, остаются просто критическими точками 2-го рода.

Критические точки 2-го рода, в которых вторая производная не существует, делятся на два класса:

– точки, в которых функция непрерывна, это так называемые точки «острого» перегиба – в таких точках к графику функции можно провести бесконечное множество касательных (рис. 28);

– точки, в которых функция терпит разрыв (в точках разрыва 2-го рода график функции имеет вертикальную асимптоту).

Для окончательного перечисления точек экстремума и перегиба функции необходимо найти их ординаты, после чего выписать указанные точки двумя координатами.

Вопросы для самопроверки.

1. Какие точки называются точками экстремума (максимума и минимума) функции?

2. Какая функция называется возрастающей (убывающей)?

3. Каковы необходимое и достаточное условия существования точек экстремума функции?

4. В чем состоит достаточное условие возрастания (убывания) функции?

5. Какие точки называются точками перегиба функции?

6. Какая функция называется выпуклой (вогнутой)?

7. Каковы необходимое и достаточное условия существования точек перегиба функции?

8. В чем состоит достаточное условие выпуклости (вогнутости) функции?

Цель урока: Научить проводить исследование функций; строить их графики.

Форма: урок-беседа.

Методы: диалог, наглядные пособия и слайды.

Оборудование: ИКТ, таблицы.

Ход урока

I. Проверка домашнего задания.

Учитель: - Ребята! У вас было домашнее задание "Критические точки функции, максимумы и минимумы". Дайте определение критической точки функции.

Ученик: - Критической точкой называется внутренняя точка области определения, в которой производная либо равна нулю, либо не существует.

Учитель: - Как найти критические точки?

Ученик: - 1

) Найти производную функции;

2) Решить уравнение: f "(x)=0. Корни этого уравнения являются критическими точками.

Учитель: - Найдите критические точки функций:

а) f(x)= 4 - 2x + 7x 2

б) f(x)= 4x - x 3 /3

а) 1) Найдем производную данной функции:

f "(x)= (4 - 2x + 7x 2)" = -2+14x

2) Решим уравнение f "(x)=0 <=> -2+14x =0 <=> x=1/7

3) Так как уравнение f "(x)=0 имеет один корень, то данная функция имеет одну критическую точку х = 1/7.

б) 1) Найдем производную данной функции: f "(x)= 4 - x 2

2) Решим уравнение: f "(x)=0 <=> 4 - x 2 = 0 <=> х = 2 или х = -2

3) Так как уравнение f "(x)=0 имеет два корня, то данная функция имеет две критические точки х 1 = 2 и х 2 = -2 .

II. Устная работа.

Учитель: - Ребята! Повторим основные вопросы, которые нужны для изучения новой темы. Для этого рассмотрим таблицы с рисунками (приложение 1 ).

Укажите точки, в которых возрастание функции сменяется убыванием. Как называются эти точки?

Ученик: - На рисунке а) - точка К-это точка максимума, на рисунке б) - точка М - это точка максимума.

Учитель: - Назовите точки минимума функции.

Ученик: - Точка К на рисунке в) и г) - точка минимума функции.

Учитель: - Какие точки могут быть точками экстремума функции?

Ученик: - Критические точки могут быть точками экстремума функции.

Учитель: - Какие необходимые условия вы знаете?

Ученик: - Существует теорема Ферма. Необходимое условие экстремума: Если точка х 0 является точкой экстремума функции f и в этой точке существует производная f ", то она равна нулю: f "(x)=0.

Учитель: - Найдите критические точки для функции:

а) f(x) = | х |

б) f(x) = 2х + | х |

Ученик: - Рассмотрим функцию f(x) = | х | (приложение 2 ). Эта функция не имеет производной в 0. Значит, 0- критическая точка. Очевидно, что в точке 0 функция имеет минимум.

Ученик: - Рассмотрим функцию f(x) = 2х + | х | (приложение 3 ). По графику видно, что в точке 0 эта функция не имеет экстремума. В этой точке функция не имеет и производной.

В самом деле, если предположить, что функция f имеет в точке 0 производную, то f(х) - 2х также имеет производную в 0. Но f(х) - 2х = | х |, а функция | х | в точке 0 не дифференцируема, т.е. мы пришли к противоречию.

Значит, функция f в точке 0 производной не имеет.

Учитель: - Из теоремы Ферма следует, что при нахождении точек экстремума нужно найти критические точки. Но из рассмотренных примеров видно, что для того чтобы данная критическая точка была точкой экстремума нужно еще какое-то дополнительное условие.

Какие достаточные условия существования экстремума в точке вы знаете?

Ученик: - Признак максимума функции : Если функция f непрерывна в точке х 0 , а f "(x)>0 на интервале (а;х 0) и f "(x) <0 на интервале (х 0 ; в), то точка х 0 является точкой максимума функции f.

То есть если в точке х 0 производная меняет знак с плюса на минус, то х 0 есть точка максимума.

Ученик: - Признак минимума : Если функция f непрерывна в точке х 0 , а f "(x) <0 на интервале (а;х 0) и f "(x) >0 на интервале (х 0 ; в), то точка х 0 является точкой минимума функции f.

То есть если в точке х 0 производная меняет знак с минуса на плюс, то х 0 есть точка минимума.

Учитель: - А какой алгоритм нахождения точек экстремума функции вы знаете.

Ученик объясняет алгоритм исследования функции f на экстремум с помощью производной (приложение 4 ) и находит точки экстремума функции:

f (х)= x 4 -2х 2

D (f) =IR и f непрерывна на всей числовой прямой, как целая рациональная функция.

2. f "(x) = 4x 3 -4х = 4х (х+1)(х-1).

3. f "(x)=0 <=> х= -1 V х=0 V х=1.

Рис.1 (знаки f ")

Так как f непрерывна в критических точках, то из рисунка 1 (приложение 5 ) видно, что -1 и 1 - точки минимума, а 0 - точка максимума функции f.

f min = f (-1) = f (1) = -1, f max = f (0) =0.

Учитель: - Ребята! Давайте вспомним алгоритм отыскания промежутков монотонности функции f.

Ученик вспоминает алгоритм отыскания промежутков монотонности функции f (приложение 6 ).

Учитель: - Найти промежутки возрастания и убывания функции f, заданной формулой

f (x)= x 3 -12х

Решение:

1. Так как f(x) - многочлен, то D (f) =IR.

2. Функция f дифференцируема на всей числовой прямой и f "(x)= 3x 2 -12 = 3 (х+2) (х-2).

3. Критическими точками функции f могут быть только нули f "(x).

f "(x) =0 <=> x = -2 V х=2.

D (f)\ {-2; 2}= (-; -2) U (-2 ; 2) U (2; +).

Рис.2 (знаки f ").

Найти области определения и значений данной функции f.

Выяснить, обладает ли функция особенностями, облегчающими исследование, то есть является ли функция f:

а) четной или нечетной;

б) периодической.

3. Вычислить координаты точек пересечения графика с осями координат.

4. Найти промежутки знакопостоянства функции f.

5. Выяснить, на каких промежутках функция f возрастает, а на каких убывает.

6. Найти точки экстремума (максимум или минимум) и вычислить значения f в этих точках.

7. Исследовать поведение функции f в окрестности характерных точек не входящих в область определения.

8. Построить график функции.

Эта схема имеет примерный характер.

Учитывая все сказанное, исследуем функцию: f(x)= 3x 5 -5х 3 +2 и построим ее график.

Проведем исследование по указанной схеме:

D (f ") =IR, так как f (x) - многочлен.

Функция f не является ни четной, ни нечетной, так как

f (-x)= 3(-x) 5 -5(-x) 3 +2 = -3x 5 +5х 3 +2= -(3x 5 -5х 3 -2) f(x)

Найдем координаты точек пересечения графика с осями координат:

а) с осью 0Х, для этого решим уравнение: 3x 5 -5х 3 +2 = 0.

Методом подбора можно найти один из корней (x = 1). Другие корни могут быть найдены только приближенно. Поэтому для данной функции остальные точки пересечения графика с осью абсцисс и промежутки знакопостоянства находить не будем.

б) с осью 0У: f(0)=2

Точка А (0; 2) - точка пересечения графика функции с осью 0У.

Отметили, что промежутки знакопостоянства не будем находить.

Найдем промежутки возрастания и убывания функции

а) f "(x)= 15x 4 -15х 2 = 15х 2 (х 2 -1)

D (f ") =IR, поэтому критических точек которых f "(x)не существует, нет.

б) f "(x) = 0, если х 2 (х 2 -1)=0 <=> x = -1 V x = 0 V x = 1.

в) Получим три критические точки, они разбивают координатную прямую на четыре промежутка. Определим знак производной на этих промежутках:

Рис.3 (знаки f ")

IV. Закрепление новой темы. Решение задач .

Учитель: - Исследуйте функцию и постройте ее график: f (x)= x 4 -2х 2 -3.

Ученик: - 1) D (f) =R.

2) f(-x)= (-x) 4 -2(-x) 2 -3 = x 4 -2х 2 -3; f(-x)= f(x),

значит, функция f является четной. Исследование ее можно проводить на промежутке функция возрастает от - до -4, поэтому на этом промежутке уравнение f (x)=0 корней не имеет.

б) На промежутке [-1; 2] уравнение так же не имеет корней, так как на этом промежутке функция убывает от -4 до -31.

в) На промежутке .

Сначала найдем точку минимума, для чего вычислим производную:
y’ = (2x 3 − 3x 2 − 12x + 1)’ = 6x 2 − 6x − 12.

Найдем критические точки, решив уравнение y’ = 0. Получим стандартное квадратное уравнение:
y’ = 0 ⇒ 6x 2 − 6x − 12 = 0 ⇒ ... ⇒ x 1 = −1, x 2 = 2.

Отметим эти точки на координатной прямой, добавим знаки производной и ограничения - концы отрезка:

Масштаб картинки не имеет значения. Самое главное - отметить точки в правильной последовательности. Из школьного курса математики известно, что в точке минимума производная меняет знак с минуса на плюс. Отсчет всегда идет слева направо - в направлении положительной полуоси. Поэтому точка минимума одна: x = 2.

Теперь найдем минимальное значение функции на отрезке [−3; 3]. Оно достигается либо в точке минимума (тогда она становится точкой глобального минимума), либо на конце отрезка. Заметим, что на интервале (2; 3) производная всюду положительна, а значит y(3) > y(2), поэтому правый конец отрезка можно не рассматривать. Остались лишь точки x = −3 (левый конец отрезка) и x = 2 (точка минимума). Имеем:
y(−3) = 2(−3) 3 − 3(−3) 2 − 12(−3) + 1 = −44;
y(2) = 2*2 3 − 3*2 2 − 12*2 + 1 = −19.

Итак, наименьшее значение функции достигается на конце отрезка и равно −44.

Ответ : x min = 2; y min = −44

Из приведенных рассуждений следует важный факт, о котором многие забывают. Функция принимает максимальное (минимальное) значение не обязательно в точке экстремума. Иногда такое значение достигается на конце отрезка, и производная там не обязана равняться нулю.

Схема решения задач B15

Если в задаче B15 требуется найти максимальное или минимальное значение функции f(x) на отрезке , выполняем следующие действия:

  1. Решить уравнение f’(x) = 0. Если корней нет, пропускаем третий шаг и переходим сразу к четвертому.
  2. Из полученного набора корней вычеркнуть все, что лежит за пределами отрезка . Оставшиеся числа обозначим x 1 , x 2 , ..., x n - их, как правило, будет немного.
  3. Подставим концы отрезка и точки x 1 , x 2 , ..., x n в исходную функцию. Получим набор чисел f(a), f(b), f(x 1), f(x 2), ..., f(x n), из которого выбираем наибольше или наименьшее значение - это и будет ответ.

Небольшое пояснение по поводу вычеркивания корней, когда они совпадают с концами отрезка. Их тоже можно вычеркнуть, поскольку на четвертом шаге концы отрезка все равно подставляются в функцию - даже если уравнение f’(x) = 0 не имело решений.

Задача. Найти наибольшее значение функции y = x 3 + 3x 2 − 9x − 7 на отрезке [−5; 0].

Для начала найдем производную: y’ = (x 3 + 3x 2 − 9x − 7)’ = 3x 2 + 6x − 9.

Затем решаем уравнение: y’ = 0 ⇒ 3x 2 + 6x − 9 = 0 ⇒ ... ⇒ x = −3; x = 1.

Вычеркиваем корень x = 1, потому что он не принадлежит отрезку [−5; 0].

Осталось вычислить значение функции на концах отрезка и в точке x = −3:
y(−5) = (−5) 3 + 4·(−5) 2 − 9·(−5) − 7 = −12;
y(−3) = (−3) 3 + 4·(−3) 2 − 9·(−3) − 7 = 20;
y(0) = 0 3 + 4·0 2 − 9·0 − 7 = −7.

Очевидно, наибольшее значение равно 20 - оно достигается в точке x = −3.

Теперь рассмотрим случай, когда требуется найти точку максимума или минимума функции f(x) на отрезке . Если отрезок не задан, функция рассматривается на своей области определения. В любом случае, схема решения такова:

  1. Найти производную функции: f’(x).
  2. Решить уравнение f’(x) = 0. Если производная - дробно-рациональная функция, дополнительно выясняем, когда ее знаменатель равен нулю. Полученные корни обозначим x 1 , x 2 , ..., x n .
  3. Отметить x 1 , x 2 , ..., x n на координатной прямой и расставить знаки, которые принимает производная между этими числами. Если задан отрезок , отмечаем его и вычеркиваем все, что лежит за его пределами.
  4. Среди оставшихся точек ищем такую, где знак производной меняется с минуса на плюс (это точка минимума) или с плюса на минус (точка минимума). Такая точка должна быть только одна - это и будет ответ.

Вдумчивый читатель наверняка заметит, что для некоторых функций этот алгоритм не работает. Действительно, существует целый класс функций, для которых нахождение точек экстремума требует более сложных выкладок. Однако такие функции в ЕГЭ по математике не встречаются.

Внимательно отнеситесь к расстановке знаков между точками x 1 , x 2 , ..., x n . Помните: при переходе через корень четной кратности знак у производной не меняется. Когда ищутся точки экстремума, знаки всегда просматриваются слева направо, т.е. по направлению числовой оси.

Задача. Найти точку максимума функции

на отрезке [−8; 8].

Найдем производную:

Поскольку это дробно-рациональная функция, приравниваем к нулю производную и ее знаменатель:
y’ = 0 ⇒ x 2 − 25 = 0 ⇒ ... ⇒ x = 5; x = −5;
x 2 = 0 ⇒ x = 0 (корень второй кратности).

Отметим точки x = −5, x = 0 и x = 5 на координатной прямой, расставим знаки и границы:

Очевидно, что внутри отрезка осталась лишь одна точка x = −5, в которой знак производной меняется с плюса на минус. Это и есть точка максимума.

Еще раз поясним, чем отличаются точки экстремума от самих экстремумов. Точки экстремума - это значения переменных, при которых функция принимает наибольшее или наименьшее значение. Экстремумы - это значения самих функций, максимальные или минимальные в некоторой своей окрестности.

Помимо обычных многочленов и дробно-рациональных функций, в задаче B15 встречаются следующие виды выражений:

  1. Иррациональные функции,
  2. Тригонометрические функции,
  3. Показательные функции,
  4. Логарифмические функции.

С иррациональными функциями проблем, как правило, не возникает. Остальные случаи стоит рассмотреть более подробно.

Тригонометрические функции

Основная сложность тригонометрических функций состоит в том, что при решении уравнений возникает бесконечное множество корней. Например, уравнение sin x = 0 имеет корни x = πn, где n ∈ Z. Ну и как отмечать их на координатной прямой, если таких чисел бесконечно много?

Ответ прост: надо подставлять конкретные значения n. Ведь в задачах B15 с тригонометрическими функциями всегда есть ограничение - отрезок . Поэтому для начала берем n = 0, а затем увеличиваем n до тех пор, пока соответствующий корень не «вылетит» за пределы отрезка . Аналогично, уменьшая n, очень скоро получим корень, который меньше нижней границы.

Несложно показать, что никаких корней, кроме полученных в рассмотренном процессе, на отрезке не существует. Рассмотрим теперь этот процесс на конкретных примерах.

Задача. Найти точку максимума функции y = sin x − 5x·sin x − 5cos x + 1, принадлежащую отрезку [−π/3; π/3].

Вычисляем производную: y’ = (sin x − 5x·sin x − 5cos x + 1)’ = ... = cos x − 5x·cos x = (1 − 5x)·cos x.

Затем решаем уравнение: y’ = 0 ⇒ (1 − 5x)·cos x = 0 ⇒ ... ⇒ x = 0,2 или x = π/2 + πn, n ∈ Z.

С корнем x = 0,2 все понятно, а вот формула x = π/2 + πn требует дополнительной обработки. Будем подставлять разные значения n, начиная с n = 0.

n = 0 ⇒ x = π/2. Но π/2 > π/3, поэтому корень x = π/2 не входит в исходный отрезок. Кроме того, чем больше n, тем больше x, поэтому нет смысла рассматривать n > 0.

n = −1 ⇒ x = − π/2. Но −π/2 < −π/3 - этот корень тоже придется отбросить. А вместе с ним - и все корни для n < −1.

Получается, что на отрезке [−π/3; π/3] лежит только корень x = 0,2. Отметим его вместе со знаками и границами на координатной прямой:

Чтобы удостовериться, что справа от x = 0,2 производная действительно отрицательна, достаточно подставить в y’ значение x = π/4. Мы же просто отметим, что в точке x = 0,2 производная меняет знак с плюса на минус, а следовательно это точка максимума.

Задача. Найти наибольшее значение функции y = 4tg x − 4x + π − 5 на отрезке [−π/4; π/4].

Вычисляем производную: y’ = (4tg x − 4x + π − 5)’ = 4/cos 2x − 4.

Затем решаем уравнение: y’ = 0 ⇒ 4/cos 2x − 4 = 0 ⇒ ... ⇒ x = πn, n ∈ Z.

Выделим из этой формулы корни, подставляя конкретные n, начиная с n = 0:
n = 0 ⇒ x = 0. Этот корень нам подходит.
n = 1 ⇒ x = π. Но π > π/4, поэтому корень x = π и значения n > 1 надо вычеркнуть.
n = −1 ⇒ x = −π. Но π < −π/4, поэтому x = π и n < −1 тоже вычеркиваем.

Из всего многообразия корней остался лишь один: x = 0. Поэтому вычисляем значение функции для x = 0, x = π/4 и x = −π/4.
y(0) = 4tg 0 − 4·0 + π − 5 = π − 5;
y(π/4) = 4tg (π/4) − 4·π/4 + π − 5 = −1;
y(π/4) = 4tg (−π/4) − 4·(−π/4) + π − 5 = ... = 2π − 9.

Теперь заметим, что π = 3,14... < 4, поэтому π − 5 < 4 − 5 = −1 и 2π − 9 < 8 − 9 = −1. Получается одно положительное число и два отрицательных. Мы ищем наибольшее - очевидно, это y = −1.

Заметим, что в последней задаче можно было и не сравнивать числа между собой. Ведь из чисел π − 5, 1 и 2π − 9 в бланк ответов может быть записана лишь единица. Действительно, как написать в бланке, скажем, число π? А никак. Это важная особенность первой части ЕГЭ по математике, которая значительно упрощает решение многих задач. И работает она не только в B15.

Иногда при исследовании функции возникают уравнения, у которых нет корней. В таком случае задача становится еще проще, поскольку остается рассмотреть лишь концы отрезка.

Задача. Найти наименьшее значение функции y = 7sin x − 8x + 5 на отрезке [−3π/2; 0].

Сначала находим производную: y’ = (7sin x − 8x + 5)’ = 7cos x − 8.

Попробуем решить уравнение: y’ = 0 ⇒ 7cos x − 8 = 0 ⇒ cos x = 8/7. Но значения cos x всегда лежат на отрезке [−1; 1], а 8/7 > 1. Поэтому корней нет.

Если корней нет, то и вычеркивать ничего не надо. Переходим к последнему шагу - вычисляем значение функции:
y(−3π/2) = 7sin (−3π/2) − 8·(−3π/2) + 5 = ... = 12π + 12;
y(0) = 7sin 0 − 8·0 + 5 = 5.

Поскольку число 12π + 12 в бланк ответов не записать, остается лишь y = 5.

Показательные функции

Вообще говоря, показательная функция - это выражение вида y = a x , где a > 0. Но в задаче B15 встречаются только функции вида y = e x и, в крайнем случае, y = e kx + b . Причина в том, что производные этих функций считаются очень легко:

  1. (e x)" = e x . Ничего не изменилось.
  2. (e kx + b)" = k·e kx + b . Просто добавляется множитель, равный коэффициенту при переменной x. Это частный случай производной сложной функции.

Все остальное абсолютно стандартно. Разумеется, настоящие функции в задачах B15 выглядят более сурово, но схема решения от этого не меняется. Рассмотрим пару примеров, выделяя лишь основные моменты решения - без основательных рассуждений и комментариев.

Задача. Найти наименьшее значение функции y = (x 2 − 5x + 5)e x − 3 на отрезке [−1; 5].

Производная: y’ = ((x 2 − 5x + 5)e x − 3)’ = ... = (x 2 − 3x)e x − 3 = x(x − 3)e x − 3 .

Находим корни: y’ = 0 ⇒ x(x − 3)e x − 3 = 0 ⇒ ... ⇒ x = 0; x = 3.

Оба корня лежат на отрезке [−1; 5]. Осталось найти значение функции во всех точках:
y(−1) = ((−1) 2 − 5·(−1) + 5)e − 1 − 3 = ... = 11·e −4 ;
y(0) = (0 2 − 5·0 + 5)e 0 − 3 = ... = 5·e −3 ;
y(3) = (3 2 − 5·3 + 5)e 3 − 3 = ... = −1;
y(5) = (5 2 − 5·5 + 5)e 5 − 3 = ... = 5·e 2 .

Из четырех полученных чисел в бланк можно записать лишь y = −1. К тому же, это единственное отрицательное число - оно и будет наименьшим.

Задача. Найти наибольшее значение функции y = (2x − 7)·e 8 − 2x на отрезке .

Производная: y’ = ((2x − 7)·e 8 − 2x)’ = ... = (16 − 4x)·e 8 − 2x = 4(4 − x)·e 8 − 2x .

Находим корни: y’ = 0 ⇒ 4(4 − x)·e 8 − 2x = 0 ⇒ x = 4.

Корень x = 4 принадлежит отрезку . Ищем значения функции:
y(0) = (2·0 − 7)e 8 − 2·0 = ... = −7·e 8 ;
y(4) = (2·4 − 7)e 8 − 2·4 = ... = 1;
y(6) = (2·6 − 7)e 8 − 2·6 = ... = 5·e −4 .

Очевидно в качестве ответа может выступать лишь y = 1.

Логарифмические функции

По аналогии с показательными функциями, в задаче B15 встречаются только натуральные логарифмы, поскольку их производная легко считается:

  1. (ln x)’ = 1/x;
  2. (ln(kx + b))’ = k/(kx + b). В частности, если b = 0, то (ln(kx))’ = 1/x.

Таким образом, производная всегда будет дробно-рациональной функцией. Остается лишь приравнять эту производную и ее знаменатель к нулю, а затем решить полученные уравнения.

Для поиска максимального или минимального значения логарифмической функции помните: натуральный логарифм обращается в «нормальное» число только в точках вида e n . Например, ln 1 = ln e 0 = 0 - это логарифмический ноль, и чаще всего решение сводится именно к нему. В остальных случаях «убрать» знак логарифма невозможно.

Задача. Найти наименьшее значение функции y = x 2 − 3x + ln x на отрезке .

Считаем производную:

Находим нули производной и ее знаменателя:
y’ = 0 ⇒ 2x 2 − 3x + 1 = 0 ⇒ ... ⇒ x = 0,5; x = 1;
x = 0 - тут решать нечего.

Из трех чисел x = 0, x = 0,5 и x = 1 внутри отрезка лежит только x = 1, а число x = 0,5 является его концом. Имеем:
y(0,5) = 0,5 2 − 3·0,5 + ln 0,5 = ln 0,5 − 1,25;
y(1) = 1 2 − 3·1 + ln 1 = −2;
y(5) = 5 2 − 3·5 + ln 5 = 10 + ln 5.

Из полученных трех значений лишь y = −2 не содержит знака логарифма - это и будет ответ.

Задача. Найти наибольшее значение функции y = ln(6x) − 6x + 4 на отрезке .

Вычисляем производную:

Выясняем, когда производная или ее знаменатель равны нулю:
y’ = 0 ⇒ 1 − 6x = 0 ⇒ x = 1/6;
x = 0 - уже решено.

Вычеркиваем число x = 0, поскольку оно лежит за пределами отрезка . Считаем значение функции на концах отрезка и в точке x = 1/6:
y(0,1) = ln(6·0,1) − 6·0,1 + 4 = ln 0,6 + 3,4;
y(1/6) = ln(6·1/6) − 6·1/6 + 4 = ln 1 + 3 = 3;
y(3) = ln(6·3) − 6·3 + 4 = ln 18 − 14.

Очевидно, только y = 3 может выступать в качестве ответа - остальные значения содержат знак логарифма и не могут быть записаны в бланк ответов.

Похожие статьи

  • Стихотворение Некрасова Н

    В августе, около "Малых Вежей", С старым Мазаем я бил дупелей.Как-то особенно тихо вдруг стало, На небе солнце сквозь тучу играло.Тучка была небольшая на нём, А разразилась жестоким дождём!Прямы и светлы, как прутья стальные, В землю...

  • Итальянские глаголы Спряжение глаголов в итальянском языке

    В этой статье мы начнём изучать глаголы в итальянском языке , а именно – их классификацию. Чтобы система классификации глаголов была более понятной, разделим её на несколько основных частей. I. Разделение итальянских глаголов по смысловому...

  • Спрашиваем и подсказываем дорогу

    Как подсказать или узнать дорогу на английском языке? Вспомните ситуацию: к вам подходит иностранец и спрашивает, как ему куда-то пройти. Вы напрягаете все силы, чтобы извлечь из недр сознания хоть какие-то фразы, и долго объясняете ему...

  • Дмитрий Александрович Пригов: памяти поэта

    Д. Пригов. Инсталляция "Плачущий глаз (Для бедной уборщицы)"В 2011 году Эрмитаж объявил о реализации грандиозного проекта «Эрмитаж 20/21». По словам директора музея М. Б. Пиотровского: «Задачи этого проекта - собирать, выставлять и изучать...

  • Кастельс мануэль Литература на русском языке

    КАСТЕЛЬС, МАНУЭЛЬ (Castells, Manuel)(р. 1942) – социолог-постмарксист, ведущий исследователь информационного (постиндустриального) общества, один из основателей теории новой социологии города. Родился 9 февраля 1942 в Испании, в городке...

  • Смутное время в истории россии

    СМУТА (СМУТНОЕ ВРЕМЯ) – глубокий духовный, экономический, социальный, и внешнеполитический кризис, постигший Россию в конце 16– начале 17 в. Первый период, начало Смуты, ознаменовался жестокой борьбой за престол множества претендентов....