Что такое геоид в географии. Что такое геоид? Физическая поверхность Земли

Человек начал задумываться о том, что представляет собой наша планета, ещё в древние времена. Пробуя объяснить новые явления, люди прибегали к доступным для них понятиям, проводя параллели с окружающей их местностью и природой. Дошедшие до нашего времени исторические источники помогают разобраться, как менялись представления людей о форме и месте нашей планеты во Вселенной в ходе эволюции.

Представления людей в древности

Самые первые источники – изображения и рисунки в пещерах, насечки на костях и камнях. В древности не было у людей единого представления о форме нашей планеты – всё зависело от региона проживания, природы, климатических условий и рельефа местности.

Предположения жителей Вавилона

Цивилизации, территория проживания которых находилась между реками Тигр и Ефрат, оставили самые ценные знания. Им больше чем шесть тысяч лет. Жители Вавилона олицетворяли Землю в качестве «Мировой горы». Их страна Вавилония занимала западный склон, на востоке их земли упирались в горы необъятной высоты, переход через которые считался невозможным. К югу от страны простиралось море, омывающее «гору» со всех сторон.

Земля для выходцев из Палестины

Равнинные территории государства способствовали тому, что в представлении её жителей Земля выглядела равниной, на которой не исключены горы.

Легенды Японии, Индии и Китая

Представления древних индийцев являются невероятно интересными и отличаются особенной живописностью образов. Народы этих государств были убеждены, что форма Земли – полусфера, опирающаяся на спины четырёх гигантов – слонов. Слоны стоят на спине огромной черепахи, которая обитает в море молока. Все существа при этом обвиты чёрной коброй Шешу, имеющей тысячи голов, подпирающих Вселенную.

Жители древней Японии предписывали нашей планете кубическую форму. Для землетрясений, которые являлись частым явлением на территории государства, было найдено интересное объяснение. Землетрясения, по их поверьям, вызывались буйствами огнедышащего дракона, обитающего в глубинных недрах Земли.

В Китае планета виделась плоским прямоугольником, по всем углам которого расположены четыре опоры. Итак, колонны подпирают выпуклый купол небес. Одна из них когда-то давно была повреждена чудищем – драконом, и это привело к тому, что Земля постоянно кренится на восток, а небо имеет уклон на запад. Эта теория доступно объясняла передвижения небесных светил и течение рек, которое направлено на восток.


_
Верования ацтеков и майя

Эти древние цивилизации были уверены, что форма Земли – квадратная. В центре фигуры произрастает Первоначальное Древо, по углам – ещё по одному из деревьев, каждое из которых имеет своё обозначение. До Земли существовали лишь Небо и Вода, к созданию суши приложили руку, конечно, боги, главным деятелем стал Кетцалькоатль.

Древняя Греция

На территории Древней Греции было принято считать, что планета является выпуклым диском, напоминающим щит воина. По медному небосводу двигается Солнце, суша со всех сторон окружена водой – Океаном.

Эпоха Средневековья

Корабельные путешествия, появление подробных карт позволило ещё в Средневековье сделать выводы, что Земля имеет шарообразную форму. Именно в этот исторический период было установлено, что все планеты Солнечной системы, в том числе и наша, вращаются вокруг Солнца. Благодаря изысканиям всем известных Николая Коперника, Галилео Галилея.

Современность

В 1873 году впервые было введено понятие «геоид» . Его автором был физик и математик Иоганн Листинг. Данный термин введён для обозначения формы нашей планеты, которая максимально приближена к эллипсоиду вращения.

Исследования учёных по этому вопросу имеют важнейшее значение, с каждой новой подтверждённой информацией мы приближаемся к очередному открытию. Владение точными знаниями способствует правильному вычислению координат небесных и земных тел. Это особенно необходимо для морской и космической навигации, во время выполнения строительных, геодезических работ и во многих других сферах человеческой деятельности.

Какую же форму имеет Земля? Шар, эллипс, геоид (ge – земля + eidos – вид)… Мы точно знаем, что Земля не плоская. И все этапы верований и научных изысканий привели нас к наиболее верной формулировке: Земля имеет неправильную форму, форму геоида (землеподобную).

Калужская область, Боровский район, деревня Петрово


_
От того, как мы получаем знания, зависит, как они усваиваются. В ЭТНОМИРе жажду познания можно утолить, став участником одной из . Получая те или иные сведения об окружающем мире, ученики узнают обо всём как бы изнутри: в основе обучения лежит принцип наглядности. Мы за то, чтобы образование было частью личностного роста: изучая мир – познаём себя!

Детские образовательные экскурсии и туры – отличный способ совместить приятное с полезным. Все программы составлены с учётом возрастных особенностей – для младших и старших классов. В обучающий процесс школьных экскурсий естественным образом включена коммуникация. Будь то история, география, биология или литература – в любой школьный предмет можно привнести элемент игры, посредством которой информация воспринимается лучше.

Землю в первом приближении можно считать шаром. Во втором приближении Землю принимают за эллипсоид вращения; в некоторых исследованиях ее считают двухосным эллипсоидом. Геоид- тело принятое за теоретическую фигуру Земли, ограниченное поверхностью океанов в их спокойном состоянии, продолженной и под материками, Из-за неравномерности распределения масс в земной коре геоид имеет неправильную геометрическую форму, и его поверхность нельзя выразить математически, что необходимо для решения геодезических задач. При решении геодезических задач геоид заменяют близкими к нему геометрически правильными поверхностями. Так, для приближенных вычислений Землю принимают за шар с радиусом 6371 км. Ближе к форме геоида подходит эллипсоид – фигура, получаемая вращением эллипса (рис. 2.1) вокруг его малой оси. Размеры земного эллипсоида характеризуют следующими основными параметрами: a  большая полуось, b  малая полуось,   полярное сжатие и e – первый эксцентриситет меридианного эллипса, где и.

Различают общеземной эллипсоид и референц-эллипсоид.

Центр общеземного эллипсоида помещают в центре масс Земли, ось вращения совмещают со средней осью вращения Земли, а размеры принимают такие, чтобы обеспечить наибольшую близость поверхности эллипсоида к поверхности геоида. Общеземной эллипсоид используют при решении глобальных геодезических задач, и в частности, при обработке спутниковых измерений. В настоящее время широко пользуются двумя общеземными эллипсоидами: ПЗ-90 (Параметры Земли 1990 г, Россия) и WGS-84 (Мировая геодезическая система 1984 г, США).

Референц-эллипсоид – эллипсоид, принятый для геодезических работ в конкретной стране. С референц-эллипсоидом связана принятая в стране система координат. Параметры референц-эллипсоида подбираются под условием наилучшей аппроксимации данной части поверхности Земли. При этом совмещения центров эллипсоида и Земли не добиваются.

В России с 1946 г. в качестве референц-эллипсоида используется эллипсоид Красовского с параметрами: а = 6 378 245 м, a = 1/ 298,3.

2.Системы координат в геодезии. Абсолютные и относительные высоты .

Системы координат, применяемые в геодезии

Для определения положения точек в геодезии применяют пространственные прямоугольные, геодезические и плоские прямоугольные координаты.

Пространственные прямоугольные координаты. Начало системы координат расположено в центре O земного эллипсоида (рис. 2.2).

Ось Z направлена по оси вращения эллипсоида к северу. ОсьХ лежит в пересечении плоскости экватора с начальнымгринвичским меридианом. ОсьY направлена перпендикулярно осямZ иX на восток.

Геодезические координаты. Геодезическими координатами точки являются ее широта, долгота и высота (рис. 2.2).

Геодезической широтой точки М называется уголВ , образованный нормалью к поверхности эллипсоида, проходящей через данную точку, и плоскостью экватора.

Широта отсчитывается от экватора к северу и югу от 0до 90и называется северной или южной. Северную широту считают положительной, а южнуюотрицательной.

Плоскости сечения эллипсоида, проходящие через ось OZ , называютсягеодезическими меридианами .

Геодезической долготой точкиМ называется двугранный уголL , образованный плоскостями начального (гринвичского) геодезического меридиана и геодезического меридиана данной точки.

Долготу отсчитывают от начального меридиана в пределах от 0до 360на восток, или от 0до 180на восток (положительные) и от 0до 180на запад (отрицательные).

Геодезической высотой точки М является ее высотаН над поверхностью земного эллипсоида.

Геодезические координаты с пространственными прямоугольными координатами связаны формулами

X = (N + H ) cosB cosL , Y = (N+H ) cosB sinL , Z = [(1 e 2 ) N+H ] sinB ,

где e первый эксцентриситет меридианного эллипса иN радиус кривизны первого вертикала. При этомN = a / (1e 2 sin 2 B ) 1/2 . Геодезические и пространственные прямоугольные координаты точек определяют с помощью спутниковых измерений, а также путем их привязки геодезическими измерениями к точкам с известными координатами. Отметим, что наряду с геодезическими существуют еще астрономические широта и долгота.Астрономическая широта этоугол, составленный отвесной линией в данной точке с плоскостью экватора.Астрономическая долгота – угол между плоскостями Гринвичского меридиана и проходящего через отвесную линию в данной точке астрономического меридиана. Астрономические координаты определяют на местности из астрономических наблюдений.Астрономические координаты отличаются от геодезических потому, что направления отвесных линий не совпадают с направлениями нормалей к поверхности эллипсоида. Угол между направлением нормали к поверхности эллипсоида и отвесной линией в данной точке земной поверхности называется уклонением отвесной линии .

Обобщением геодезических и астрономических координат является термин – географические координаты .

Плоские прямоугольные координаты. Для решения задач инженерной геодезии от пространственных и геодезических координат переходят к более простым – плоским координатам, позволяющим изображать местность на плоскости и определять положение точек двумя координатами х и у .

Поскольку выпуклую поверхность Земли изобразить на плоскости без искажений нельзя, введение плоских координат возможно только на ограниченных участках, где искажения так малы, что ими можно пренебречь. В России принята система прямоугольных координат, основой которой является равноугольная поперечно–цилиндрическая проекция Гаусса. Поверхность эллипсоида изображается на плоскости по частям, называемым зонами. Зоны представляют собой сферические двуугольники, ограниченные меридианами, и простирающиеся от северного полюса до южного (рис. 2.3). Размер зоны по долготе равен 6. Центральный меридиан каждой зоны называется осевым. Нумерация зон идет от Гринвича к востоку.

Долгота осевого меридиана зоны с номером N равна:

 0 = 6 N  3 .

Осевой меридиан зоны и экватор изображаются на плоскости прямыми линиями (рис. 2.4). Осевой меридиан принимают за ось абсцисс x , а экватор  за ось ординат y . Их пересечение (точка O ) служит началом координат данной зоны.

Чтобы избежать отрицательных значений ординат, координаты пересечения принимают равными x 0 = 0, y 0 = 500 км, что равносильно смещению оси х к западу на 500 км.

Чтобы по прямоугольным координатам точки можно было судить, в какой зоне она расположена, к ординате y слева приписывают номер координатной зоны.

Пусть например, координаты точки А имеют вид:

x А = 6 276 427 м,y А = 12 428 566 м

Эти координаты указывают на то, что точка А находится на расстоянии 6276427 м от экватора, в западной части (y  500 км) 12-ой координатной зоны, на расстоянии 500000  428566 = 71434 м от осевого меридиана. Для пространственных прямоугольных, геодезических и плоских прямоугольных координат в России принята единая система координат СК-95, закрепленная на местности пунктами государственной геодезической сети и построенная по спутниковым и наземным измерениям по состоянию на эпоху 1995 г

Системы высот

Счет высот в инженерной геодезии ведут от одной из уровенных поверхностей. Высотой точки называют расстояние по отвесной линии от точки до уровенной поверхности, принятой за начало счета высот.

Высоты являются абсолютными, если их отсчитывают от основной уровенной поверхности, то есть от поверхности геоида. На рис. 2.5 отрезки отвесных линий Аа и Вв  абсолютные высоты точек А и В .

Высоты называют условными, если за начало счета высот выбрана какая-либо другая уровенная поверхность. На рис. 2.5 отрезки отвесных линий Аа и Вв  условные высоты точек А и В .

В России принята Балтийская система высот. Счет абсолютных высот ведут от уровенной поверхности. Численное значение высоты принято называть отметкой. Например, если высота точки А равна H А = 15,378 м, то говорят, что отметка точки равна 15,378 м.

Разность высот двух точек называется превышением . Так, превышение точкиВ над точкойА равно

h AB = H В H A .

Зная высоту точки А , для определения высоты точкиВ на местности измеряют превышениеh AB . Высоту точкиВ вычисляют по формуле

H В = H A + h AB .

Измерение превышений и последующее вычисление высот точек называется нивелированием.

Абсолютную высоту точки следует отличать от ее геодезической высоты, то есть высоты, отсчитываемой от поверхности земного эллипсоида (см. раздел 2.2).Геодезическая высота отличается от абсолютной высоты на величину отклонения поверхности геоида от поверхности эллипсоида .

Геоид - это модель фигуры Земли (т. е. ее аналог по размерам и форме), которая совпадает со средним уровнем моря, а в континентальных районах определяется спиртовым уровнем. Служит базовой поверхностью, от которой измеряются топографические высоты и глубины океана. Научная дисциплина о точной форме Земли (геоиде), ее определении и значимости называется геодезией. Более подробная информация об этом представлена в статье.

Постоянство потенциала

Геоид везде перпендикулярен направлению силы тяжести и по форме приближается к правильному сплюснутому сфероиду. Однако это не везде так из-за локальных концентраций скопившейся массы (отклонения от однородности на глубине) и из-за различий по высоте между континентами и морским дном. Математически говоря, геоид - это эквипотенциальная поверхность, т. е. характеризующаяся постоянством потенциальной функции. Она описывает комбинированные эффекты гравитационного притяжения массы Земли и центробежного отталкивания, вызванного вращением планеты вокруг своей оси.

Упрощенные модели

Геоид из-за неравномерного распределения массы и возникающих при этом не является простой математической поверхностью. Он не совсем подходит для эталона геометрической фигуры Земли. Для этого (но не для топографии) просто используются приближения. В большинстве случаев достаточным геометрическим представлением Земли является сфера, для которой должен быть указан только радиус. Когда требуется более точное приближение, используется эллипсоид вращения. Это поверхность, создаваемая поворотом эллипса на 360° относительно его малой оси. Эллипсоид, используемый в геодезических расчетах для представления Земли, называется эталонным. Такая форма часто используется в качестве простой базовой поверхности.

Эллипсоид вращения задается двумя параметрами: большой полуосью (экваториальный радиус Земли) малой полуосью (полярный радиус). Уплощение f определяется как разность между большой и малой полуосями, деленная на большую f = (a - b) / a . Полуоси Земли различаются примерно на 21 км, а эллиптичность составляет около 1/300. Отклонения геоида от эллипсоида вращения не превышают 100 м. Разница между двумя полуосями экваториального эллипса в случае трехосной эллипсоидной модели Земли составляет всего около 80 м.

Концепция геоида

Уровень моря, даже при отсутствии эффектов волн, ветров, течений и приливов, не образует простую математическую фигуру. Невозмущенная поверхность океана должна быть эквипотенциальной поверхности гравитационного поля, а поскольку последнее отражает неоднородности плотности внутри Земли, то это же относится и к эквипотенциалам. Частью геоида является эквипотенциальная поверхность океанов, которая совпадает с невозмущенным средним уровнем моря. Под континентами геоид не является непосредственно доступным. Скорее он представляет собой уровень, до которого поднимется вода, если через континенты от океана до океана проделать узкие каналы. Локальное направление силы тяжести перпендикулярно поверхности геоида, а угол между этим направлением и нормалью к эллипсоиду называют отклонением от вертикали.

Отклонения

Может показаться, что геоид - это теоретическая концепция, обладающая небольшой практической ценностью, особенно в отношении точек на поверхности суши континентов, но это не так. Высоты точек на земле определяются путем геодезического выравнивания, при котором спиртовым уровнем устанавливается касательная к эквипотенциальной поверхности, а калиброванные вешки выравниваются с помощью отвеса. Следовательно, различия в высоте определяются по отношению к эквипотенциалу и поэтому очень близко к геоиду. Таким образом, определение 3-х координат точки на континентальной поверхности классическими методами требовало знания 4-х величин: широты, долготы, высоты над геоидом Земли и отклонения от эллипсоида в этом месте. Отклонение вертикали играло большую роль, поскольку его компоненты в ортогональных направлениях привносили те же ошибки, что и в астрономических определениях широты и долготы.

Хотя геодезическая триангуляция обеспечивала относительные горизонтальные положения с высокой точностью, сети триангуляции в каждой стране или континенте начинались с точек с предполагаемыми астрономическими позициями. Единственная возможность объединения этих сетей в глобальную систему заключалась в вычислении отклонений во всех начальных точках. Современные методы геодезического позиционирования изменили этот подход, но геоид остается важной концепцией, обладающей определенной практической пользой.

Определение формы

Геоид - это, по существу, эквипотенциальная поверхность реального гравитационного поля. В окрестностях локального избытка массы, который добавляет потенциал ΔU к нормальному потенциалу Земли в точке, чтобы поддерживать постоянный потенциал, поверхность должна деформироваться наружу. Волна задается формулой N= ΔU/g, где g - локальное значение ускорения силы тяжести. Эффект массы над геоидом усложняет простую картину. Это можно решить на практике, но удобно рассматривать точку на уровне моря. Первая проблема заключается в определении N не через ΔU, который не измеряется, а по отклонению g от нормального значения. Разница между локальной и теоретической силой тяжести на той же широте эллипсоидальной Земли, свободной от изменений плотности, равна Δg. Эта аномалия возникает по двум причинам. Во-первых, из-за притяжения избытка массы, влияние которого на гравитацию определяется отрицательной радиальной производной -∂(ΔU) / ∂r. Во-вторых, из-за эффекта высоты N, поскольку гравитация измеряется на геоиде, а теоретическое значение относится к эллипсоиду. Вертикальный градиент g на уровне моря равен -2g/а, где a - радиус Земли, поэтому эффект высоты определяется выражением (-2g/a) N = -2 ΔU/a. Таким образом, объединяя оба выражения, Δg = -∂/∂r(ΔU) - 2ΔU/a.

Формально уравнение устанавливает связь между ΔU и измеримым значением Δg, а после определения ΔU уравнение N= ΔU/g даст высоту. Однако, поскольку Δg и ΔU содержат эффекты массовых аномалий по всей неопределенной области Земли, а не только под станцией, последнее уравнение нельзя решить в одной точке без ссылки на другие.

Проблему связи N и Δ g решил британский физик и математик сэр Джордж Габриэль Стокс в 1849 г. Он получил интегральное уравнение для N, содержащее значения Δg с функцией их сферического расстояния от станции. До запуска спутников в 1957 г. формула Стокса была основным методом определения формы геоида, но ее применение представляло большие трудности. Функция сферического расстояния, содержащаяся в подинтегральном выражении, очень медленно сходится и при попытке рассчитать N в любой точке (даже в тех странах, где g были измерены в широких масштабах) неопределенность возникает из-за наличия неисследованных районов, которые могут находиться на значительных расстояниях от станции.

Вклад спутников

Появление искусственных спутников, орбиты которых можно наблюдать с Земли, полностью революционизировало расчет формы планеты и ее гравитационного поля. Через несколько недель после запуска первого советского спутника в 1957 г. было получено значение эллиптичности, которое вытеснило все предыдущие. С того времени ученые неоднократно уточняли геоид программами наблюдения с околоземной орбиты.

Первым геодезическим спутником стал «Лагеос», запущенный Соединенными Штатами 4 мая 1976 г. на почти круговую орбиту на высоте около 6 тыс. км. Он представлял собой алюминиевую сферу диаметром 60 см с 426-ю отражателями лазерных лучей.

Форма Земли была установлена благодаря сочетанию наблюдений «Лагеоса» и поверхностных измерений силы тяжести. Отклонения геоида от эллипсоида достигают 100 м, а наиболее выраженная внутренняя деформация расположена к югу от Индии. Очевидной прямой корреляции между континентами и океанами нет, но прослеживается связь с некоторыми основными особенностями глобальной тектоники.

Радарная альтиметрия

Геоид Земли над океанами совпадает со средним уровнем моря при условии отсутствия динамических эффектов действия ветров, приливов и течений. Вода отражает радиолокационные волны, поэтому спутник, оборудованный радаром-высотомером, может использоваться для измерения расстояния до поверхности морей и океанов. Первым таким сателлитом был Seasat 1, запущенный Соединенными Штатами 26 июня 1978 года. На основе полученных данных была составлена карта. Отклонения от результата расчетов, сделанных предыдущим методом, не превышают 1 м.

Земля – самая крупная из внутренних планет и самая массивная. При непосредственном наблюдении на местности поверхность Земли кажется плоской. Такой ее считали в древности. Много времени и усилий потребовалось человечеству, чтобы убедиться, что Земля имеет шарообразную форму. Когда и кто впервые это понял, в точности неизвестно, бесспорно, это было давно.

Значение шарообразности Земли. До V века до н.э. представление о форме Земли основывалось на чувственном восприятии: она считалась плоской, дискообразной, окруженной мифической рекой Океан. В IV в. до н.э. пифагорейцы создали учение о шарообразности Земли. Оно не выводилось из опытных наблюдений, а основывалось на логике: Земля как совершенное тело должна иметь и “совершенную” форму – шаровую. Представление о шарообразности Земли утвердилось не сразу.

Они были произведены после того, как Аристотель (IV в. до н.э.) доказал, что Земля – шар. Эратосфен (III в. до н.э.) высчитал его размеры, получив удивительно близкие к действительной длине большого круга – около 40000 км Он исходил из того, что в день летнего солнцестояния в городе Сиене (теперь Асусен, Египет) Солнце, находясь в зените, отражается в глубоких колодцах. В Александрии (790 км севернее Сиены), в это время солнечные лучи падают не вертикально, а под углом в 7 о 12" (угол был определен при помощи скафиса). Эратосфен рассмотрел расстояние между Александрией и Сиеной как часть дуги земной окружности, которая равняется 790 км, и определил длину дуги в 1 о – 107 км, а после определил, чему же равны все 360 о, т.е. получил 39500 км

Концепция шарообразной Земли произвела переворот в мировоззрении о представлении, о пространстве и имела огромное значение в развитии естествознания и философии.

1. Шаровая фигура при минимальном объеме концентрирует максимальную массу материи. Вещество планеты сжимается, внутри формируется центральное ядро и оболочки. Оболочечное строение Земли – одно из самых фундаментальных ее свойств. Внутри тела Земли господствуют силы тяготения, в атмосфере – силы сцепления.

2. Солнечные лучи на шаровую поверхность падают в разных широтах, под разными углами (рис.1.3). Это создает сферическое термическое поле Земли – количество тепла от экватора к полюсам уменьшается, формируются термические пояса – жаркий, два умеренных и два холодных. Распределение тепла по земной поверхности – главная причина формирования климатов.

Шарообразная форма планеты обуславливает постоянное разделение ее на освещенную дневную и неосвещенную ночную половины. Вместе с вращением вокруг оси это определяет суточную ритмику теплового режима географической оболочки.



Земля – сфероид. Фигуры планет создаются действием сил двух родов:

а) тяготения, которые формируют шаровую форму (на Земле силы тяготения в сотни раз больше, чем сцепление стали, на малых небесных телах, например астероидах, действуют силы сцепления, поэтому эти тела не имеют шаровой формы);

б) центробежными от осевого вращения, которые вызывают полярное сжатие (сплюснутость) и определяют сфероидальную форму.


Рис. 1.3. Углы наклонов солнечных лучей на шаровую
поверхность Земли

Центробежная сила придала Земле форму эллипсоида вращения, поверхность которого ближе к центру Земли у полюсов и дальше от него у экватора, подобно поверхности колец, сжимающихся при вращении.

Отступление эллипсоида от шара невелико – всего 21,5 км на полюсах (рис.1.4). Для процессов, происходящих в географической оболочке, распределения тепла, движения воздушных масс, расселения растений и животных – это не имеет значения.

Рис. 1.4. Форма эллипсоида Земли. Rn – 6356,8 км; Rэ – 6378,3 км; Rэ – Rn = 6378,2– 6356,8 = 21,5 км

Но сферическая деформация отражается на тектонике земной коры и, следовательно, на рельефе.

Еще в 1754 г И. Кант высказался о приливном трении, замедляющем вращение Земли. Поздней было доказано, что за геологическое время (с архея) сутки удлинились примерно на 4 часа. Происходит вековое замедление осевого вращения Земли. Через миллиард лет продолжительность суток возрастет до 31 часа. Полярная сплюснутость Земли была обнаружена еще в XVII в. В 1672 году из Парижа в Коенну были перевезены часы, маятник которых имел такую длину, при которой в Париже период качания равнялся секунде. Близ экватора часы стали отставать на 2 минуты в сутки, и маятник пришлось укоротить на 2 мм. Это явление Ньютон объяснил уменьшением силы тяжести в экваториальных широтах по сравнению со средней, которое вызвано сжатием Земли с полюсов и втянутостью по экватору.

Геодезические работы, проведенные под руководством Ф.Н. Красовского показали, что представление о форме Земли как о сфероиде недостаточно. Экваториальные полуоси или радиусы земного сфероида неодинаковые.

Приливы и отливы наблюдаются не только на море, но и на суше. В районе Москвы, например, поверхность земли два раза в сутки поднимается и опускается примерно на 1040 см, но мы этого не ощущаем.

Земля – геоид. Кроме сил тяготения, фигура Земли определяется и распределением в ее теле тяжелых и относительно легких горных пород, поскольку с их плотностью связано значение силы тяжести. В местах скопления тяжелых пород поверхность фигуры должна отступать к центру планеты, а там, где скопились породы меньшей плотности – от центра.

Фигурой планеты называется не ее физическая поверхность с горами, и низменными равнинами; это теоретическая – уровненная поверхность, которая всюду перпендикулярна направлению силы тяжести или отвесу. Она получила название геоида (что буквально означает – форма Земли) форма Земли не совпадает ни с какой математической фигурой и сугубо индивидуальна.

В последние годы обнаружено, что Земля слегка грушеподобна: в средних широтах южного полушария поверхность геоида несколько (20 м) выше сфероида. На экваторе они совпадают, в средних широтах северного полушария геоид ниже сфероида. Северный полюс приподнят на 15 м, южный полюс опущен на 20 м. А вся Антарктида на 30 м ниже эллипсоида.

Вращение Земли вокруг своей оси создает центробежную силу: чем ближе к экватору, тем сильнее тянет материал нашей планеты «наружу».

За миллионы лет вращение Земли вокруг своей оси изменило ее форму - как у летящей капли воды. В 1924 г. Международный геодезический и геофизический союз принял решение, что точнее всего форму нашей планеты описывает симметричное геометрическое терло - международный эллипсоид.

Однако уже несколько лет известно, что истинная далека от эллипсоидальной. Об этом свидетельствуют данные спутников, давших более точные изображения ее поверхности.

Геоид земли — подобно капле воды

Поскольку выступающие участки мешают точно определить ее форму, ученые разработали теоретическую модель Земли, полностью покрытой водой, на основе среднего уровня моря. Поверхность такого тела, как и у воды, гладкая и однородная. Его назвали геоид земли.

Как ни странно, даже у такого абстрактного тела довольно сложная форма - с выступами и впадинами амплитудой до 100 м. Например, юг находится в стометровой яме, а Индонезия - на бугре высотой 75 м; посреди Тихого океана еще один выступ - на 100 м выше окружающей поверхности.

Ученые детально исследуют строение и состав ядра , в частности его гравитационную неоднородность, которая может проявляться снаружи. Известно, что и масса земной коры распределена неравномерно, это тоже сказывается на силе тяжести. Местами, например под океанами, мощность коры всего несколько километров, а под горными массивами она намного больше.

На одних участках горные породы тяжелые (обладают высокой плотностью), на других они гораздо легче. На суше сила тяжести выше средней. Именно здесь геоид земли образует впадины, а в зоне океанов - выступы.

Похожие статьи

  • Мир культуры. Загадочный падишах. акбар великий Джалал уд-дин Мухаммад Акбар

    бакалавр истории по направлению "История"Волгоградский государственный университетмагистрант кафедры истории России ИИМОСТ ВолГУНаучный руководитель: Рамазанов С.П., доктор исторических наук, профессор, Волгоградский государственный...

  • Либерия Изобразительное искусство и ремесла

    Официальное название - Республика Либерия (Republic of Liberia).Расположена в западной части Африки. Площадь 111,4 тыс. км2, численность населения 3,3 млн чел. (2002). Государственный язык - английский. Столица - г. Монровия (1,3 млн чел.,...

  • Гибель колонны 245 мсп в аргунском ущелье

    Сложившееся в 1991 году двоевластие в Чечне, объявившей себя суверенной республикой, привело к противостоянию с федеральным правительством и внутренним конфликтам в борьбе за власть, закончившимся введением войск РФ в декабре 1994-го. Так...

  • Обозначение времени в английском языке?

    Всем кто интересуется изучением английского языка, приходилось сталкиваться со странными обозначениями p. m. и a. m , и вообще, везде, где упоминается о времени, почему-то используется всего 12 часовой формат . Наверное, для нас живущих...

  • Кто такие приписные крестьяне?

    В крестьянских сословиях исторического промежутка 18−19 вв. представлены самые разные социальные группы. Но на фоне остальных особое внимание обращают на себя посессионные и, конечно, приписные крестьяне. Именно они составляли в те времена...

  • Стихотворение Некрасова Н

    В августе, около "Малых Вежей", С старым Мазаем я бил дупелей.Как-то особенно тихо вдруг стало, На небе солнце сквозь тучу играло.Тучка была небольшая на нём, А разразилась жестоким дождём!Прямы и светлы, как прутья стальные, В землю...