Десятичные числа примеры. Обыкновенные и десятичные дроби и действия над ними. Перевод периодических десятичных дробей в обыкновенные


Эта статья про десятичные дроби . Здесь мы разберемся с десятичной записью дробных чисел, введем понятие десятичной дроби и приведем примеры десятичных дробей. Дальше поговорим о разрядах десятичных дробей, дадим названия разрядов. После этого остановимся на бесконечных десятичных дробях, скажем о периодических и непериодических дробях. Дальше перечислим основные действия с десятичными дробями. В заключение установим положение десятичных дробей на координатном луче.

Навигация по странице.

Десятичная запись дробного числа

Чтение десятичных дробей

Скажем пару слов о правилах чтения десятичных дробей.

Десятичные дроби, которым соответствуют правильные обыкновенные дроби, читаются также как и эти обыкновенные дроби, только еще предварительно добавляется «ноль целых». Например, десятичной дроби 0,12 отвечает обыкновенная дробь 12/100 (читается «двенадцать сотых»), поэтому, 0,12 читается как «нуль целых двенадцать сотых».

Десятичные дроби, которым соответствуют смешанные числа, читаются абсолютно также как эти смешанные числа. Например, десятичной дроби 56,002 соответствует смешанное число , поэтому, десятичная дробь 56,002 читается как «пятьдесят шесть целых две тысячных».

Разряды в десятичных дробях

В записи десятичных дробей, также как и в записи натуральных чисел, значение каждой цифры зависит от ее позиции. Действительно, цифра 3 в десятичной дроби 0,3 означает три десятых, в десятичной дроби 0,0003 – три десяти тысячных, а в десятичной дроби 30 000,152 – три десятка тысяч. Таким образом, мы можем говорить о разрядах в десятичных дробях , так же как и о разрядах в натуральных числах .

Названия разрядов в десятичной дроби до десятичной запятой полностью совпадают с названиями разрядов в натуральных числах. А названия разрядов в десятичной дроби после запятой видны из следующей таблицы.

Например, в десятичной дроби 37,051 цифра 3 находится в разряде десятков, 7 – в разряде единиц, 0 стоит в разряде десятых, 5 – в разряде сотых, 1 – в разряде тысячных.

Разряды в десятичной дроби также различаются по старшинству. Если в записи десятичной дроби двигаться от цифры к цифре слева на право, то мы будем перемещаться от старших к младшим разрядам . Например, разряд сотен старше разряда десятых, а разряд миллионных младше разряда сотых. В данной конечной десятичной дроби можно говорить о старшем и младшем разряде. К примеру, в десятичной дроби 604,9387 старшим (высшим) разрядом является разряд сотен, а младшим (низшим) - разряд десятитысячных.

Для десятичных дробей имеет место разложение по разрядам. Оно аналогично разложению по разрядам натуральных чисел . Например, разложение по разрядам десятичной дроби 45,6072 таково: 45,6072=40+5+0,6+0,007+0,0002 . А свойства сложения от разложения десятичной дроби по разрядам позволяют перейти к другим представлениям этой десятичной дроби, например, 45,6072=45+0,6072 , или 45,6072=40,6+5,007+0,0002 , или 45,6072=45,0072+0,6 .

Конечные десятичные дроби

До этого момента мы говорили лишь о десятичных дробях, в записи которых после десятичной запятой находится конечное число цифр. Такие дроби называют конечными десятичными дробями.

Определение.

Конечные десятичные дроби – это десятичные дроби, в записях которых содержится конечное число знаков (цифр).

Приведем несколько примеров конечных десятичных дробей: 0,317 , 3,5 , 51,1020304958 , 230 032,45 .

Однако не всякая обыкновенная дробь может быть представлена в виде конечной десятичной дроби. К примеру, дробь 5/13 не может быть заменена равной ей дробью с одним из знаменателей 10, 100, … , следовательно, не может быть переведена в конечную десятичную дробь. Подробнее об этом мы поговорим в разделе теории перевод обыкновенных дробей в десятичные дроби .

Бесконечные десятичные дроби: периодические дроби и непериодические дроби

В записи десятичной дроби после запятой можно допустить возможность наличия бесконечного количества цифр. В этом случае мы придем к рассмотрению так называемых бесконечных десятичных дробей.

Определение.

Бесконечные десятичные дроби – это десятичные дроби, в записи которых находится бесконечное множество цифр.

Понятно, что бесконечные десятичные дроби мы не можем записать в полном виде, поэтому в их записи ограничиваются лишь некоторым конечным числом цифр после запятой и ставят многоточие, указывающее на бесконечно продолжающуюся последовательность цифр. Приведем несколько примеров бесконечных десятичных дробей: 0,143940932… , 3,1415935432… , 153,02003004005… , 2,111111111… , 69,74152152152… .

Если внимательно посмотреть на две последние бесконечные десятичные дроби, то в дроби 2,111111111… хорошо видна бесконечно повторяющаяся цифра 1 , а в дроби 69,74152152152… , начиная с третьего знака после запятой, отчетливо видна повторяющаяся группа цифр 1 , 5 и 2 . Такие бесконечные десятичные дроби называют периодическими.

Определение.

Периодические десятичные дроби (или просто периодические дроби ) – это бесконечные десятичные дроби, в записи которых, начиная с некоторого знака после запятой, бесконечно повторяется какая-нибудь цифра или группа цифр, которую называют периодом дроби .

Например, периодом периодической дроби 2,111111111… является цифра 1 , а периодом дроби 69,74152152152… является группа цифр вида 152 .

Для бесконечных периодических десятичных дробей принята особая форма записи. Для краткости условились период записывать один раз, заключая его в круглые скобки. Например, периодическая дробь 2,111111111… записывается как 2,(1) , а периодическая дробь 69,74152152152… записывается как 69,74(152) .

Стоит отметить, что для одной и той же периодической десятичной дроби можно указать различные периоды. Например, периодическую десятичную дробь 0,73333… можно рассматривать как дробь 0,7(3) с периодом 3 , а также как дробь 0,7(33) с периодом 33 , и так далее 0,7(333), 0,7(3333), … Также на периодическую дробь 0,73333… можно посмотреть и так: 0,733(3) , или так 0,73(333) и т.п. Здесь, чтобы избежать многозначности и разночтений, условимся рассматривать в качестве периода десятичной дроби самую короткую из всех возможных последовательностей повторяющихся цифр, и начинающуюся с самой близкой позиции к десятичной запятой. То есть, периодом десятичной дроби 0,73333… будем считать последовательность из одной цифры 3 , и периодичность начинается со второй позиции после запятой, то есть, 0,73333…=0,7(3) . Еще пример: периодическая дробь 4,7412121212… имеет период 12 , периодичность начинается с третьей цифры после запятой, то есть, 4,7412121212…=4,74(12) .

Бесконечные десятичные периодические дроби получаются при переводе в десятичные дроби обыкновенных дробей, знаменатели которых содержат простые множители, отличные от 2 и 5 .

Здесь же стоит сказать о периодических дробях с периодом 9 . Приведем примеры таких дробей: 6,43(9) , 27,(9) . Эти дроби являются другой записью периодических дробей с периодом 0 , и их принято заменять периодическими дробями с периодом 0 . Для этого период 9 заменяют периодом 0 , а значение следующего по старшинству разряда увеличивают на единицу. Например, дробь с периодом 9 вида 7,24(9) заменяется периодической дробью с периодом 0 вида 7,25(0) или равной ей конечной десятичной дробью 7,25 . Еще пример: 4,(9)=5,(0)=5 . Равенство дроби с периодом 9 и соответствующей ей дроби с периодом 0 легко устанавливается, после замены этих десятичных дробей равными им обыкновенными дробями.

Наконец, повнимательнее рассмотрим бесконечные десятичные дроби, в записи которых отсутствует бесконечно повторяющаяся последовательность цифр. Их называют непериодическими.

Определение.

Непериодические десятичные дроби (или просто непериодические дроби ) – это бесконечные десятичные дроби, не имеющие периода.

Иногда непериодические дроби имеют вид, схожий с видом периодических дробей, например, 8,02002000200002… - непериодическая дробь. В этих случаях следует быть особо внимательными, чтобы заметить разницу.

Отметим, что непериодические дроби не переводятся в обыкновенные дроби, бесконечные непериодические десятичные дроби представляют иррациональные числа .

Действия с десятичными дробями

Одним из действий с десятичными дробями является сравнение, также определены четыре основных арифметических действия с десятичными дробями : сложение, вычитание, умножение и деление. Рассмотрим отдельно каждое из действий с десятичными дробями.

Сравнение десятичных дробей по сути базируется на сравнении обыкновенных дробей , отвечающих сравниваемым десятичным дробям. Однако перевод десятичных дробей в обыкновенные является достаточно трудоемким действием, да и бесконечные непериодические дроби не могут быть представлены в виде обыкновенной дроби, поэтому удобно использовать поразрядное сравнение десятичных дробей. Поразрядное сравнение десятичных дробей аналогично сравнению натуральных чисел . Для получения более детальной информации рекомендуем изучить материал статьи сравнение десятичных дробей, правила, примеры, решения .

Переходим к следующему действию - умножению десятичных дробей . Умножение конечных десятичных дробей проводится аналогично вычитание десятичных дробей, правила, примеры, решения умножению столбиком натуральных чисел. В случае периодических дробей умножение можно свести к умножению обыкновенных дробей . В свою очередь умножение бесконечных непериодических десятичных дробей после их округления сводится к умножению конечных десятичных дробей. Рекомендуем к дальнейшему изучению материал статьи умножение десятичных дробей, правила, примеры, решения .

Десятичные дроби на координатном луче

Между точками и десятичными дробями существует взаимно однозначное соответствие.

Разберемся, как строятся точки на координатном луче, соответствующие данной десятичной дроби.

Конечные десятичные дроби и бесконечные периодические десятичные дроби мы можем заменить равными им обыкновенными дробями, после чего построить соответствующие обыкновенные дроби на координатном луче . Например, десятичной дроби 1,4 отвечает обыкновенная дробь 14/10 , поэтому точка с координатой 1,4 удалена от начала отсчета в положительном направлении на 14 отрезков, равных десятой доле единичного отрезка.

Десятичные дроби можно отмечать на координатном луче, отталкиваясь от разложения данной десятичной дроби по разрядам. Например, пусть нам нужно построить точку с координатой 16,3007 , так как 16,3007=16+0,3+0,0007 , то в данную точку можно попасть, последовательно откладывая от начала координат 16 единичных отрезков, 3 отрезка, длина которых равна десятой доле единичного, и 7 отрезков, длина которого равна десятитысячной доле единичного отрезка.

Такой способ построения десятичных чисел на координатном луче позволяет сколь угодно близко приблизиться к точке, отвечающей бесконечной десятичной дроби.

Иногда возможно точно построить точку, соответствующую бесконечной десятичной дроби. Например, , тогда этой бесконечной десятичной дроби 1,41421… соответствует точка координатного луча, удаленная от начала координат на длину диагонали квадрата со стороной 1 единичный отрезок.

Обратный процесс получения десятичной дроби, соответствующей данной точке на координатном луче, представляет собой так называемое десятичное измерение отрезка . Разберемся, как оно проводится.

Пусть наша задача заключается в том, чтобы попасть из начала отсчета в данную точку координатной прямой (или бесконечно приблизиться к ней, если попасть в нее не получается). При десятичном измерении отрезка мы можем последовательно откладывать от начала отсчета любое количество единичных отрезков, далее отрезков, длина которых равна десятой доле единичного, затем отрезков, длина которых равна сотой доле единичного, и т.д. Записывая количество отложенных отрезков каждой длины, мы получим десятичную дробь, соответствующую данной точке на координатном луче.

К примеру, чтобы попасть в точку М на приведенном выше рисунке, нужно отложить 1 единичный отрезок и 4 отрезка, длина которых равна десятой доле единичного. Таким образом, точке М соответствует десятичная дробь 1,4 .

Понятно, что точкам координатного луча, в которые невозможно попасть в процессе десятичного измерения, соответствуют бесконечные десятичные дроби.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Тема: Десятичные дроби. Сложение и вычитание десятичных дробей

Урок: Десятичная запись дробных чисел

Знаменатель дроби может быть выражен любым натуральным числом. Дробные числа, в которых знаменатель выражен числом 10; 100; 1000;…, где n , условились записывать без знаменателя. Любое дробное число, в знаменателе которого 10; 100; 1000 и т.д. (то есть единица с несколькими нулями), можно представить в виде десятичной записи (в виде десятичной дроби). Сначала пишут целую часть, затем числитель дробной части, и целую часть от дробной отделяют запятой.

Например,

Если целая часть отсутствует, т.е. дробь правильная, тогда целую часть записывают в виде 0.

Чтобы правильно записать десятичную дробь, числитель дробной части должен иметь столько же знаков, сколько нулей в дробной части.

1. Запишите в виде десятичной дроби.

2. Представить десятичную дробь в виде дроби или смешанного числа.

3. Прочитайте десятичные дроби.

12,4 - 12 целых 4 десятых;

0,3 - 0 целых 3 десятых;

1,14 - 1 целая 14 сотых;

2,07 - 2 целых 7 сотых;

0,06 - 0 целых 6 сотых;

0,25 - 0 целых 25 сотых;

1,234 - 1 целая 234 тысячных;

1,230 - 1 целая 230 тысячных;

1,034 - 1 целая 34 тысячных;

1,004 - 1 целая 4 тысячных;

1,030 - 1 целая 30 тысячных;

0,010101 - 0 целых 10101 миллионных.

4. Перенесите запятую в каждой цифре на 1 разряд влево и прочитайте числа.

34,1; 310,2; 11,01; 10,507; 2,7; 3,41; 31,02; 1,101; 1,0507; 0,27.

5. Перенесите запятую в каждом из чисел на 1 разряд вправо и прочитайте получившееся число.

1,37; 0,1401; 3,017; 1,7; 350,4; 13,7; 1,401; 30,17; 17; 3504.

6. Выразите в метрах и сантиметрах.

3,28 м = 3 м + .

7. Выразите в тоннах и килограммах.

24,030 т = 24 т .

8. Запишите в виде десятичной дроби частное.

1710: 100 = ;

64: 10000 =

803: 100 =

407: 10 =

9. Выразите в дм.

5 дм 6 см = 5 дм + ;

9 мм =

Инструкция

Научитесь переводить десятичные дроби в обыкновенные. Посчитайте, сколько знаков отделено запятой. Одна цифра справа от запятой означает, что знаменатель - 10, две - 100, три - 1000 и так далее. Например, десятичная дробь 6,8 как «шесть целых, восемь ». При преобразовании ее напишите сначала количество целых единиц - 6. В знаменателе напишите 10. В числителе будет стоять число 8. Получится, что 6,8 = 6 8/10. Вспомните правила сокращения. Если числитель и знаменатель делятся на одно и то же число, то дробь можно сократить на общий делитель. В данном случае это число 2. 6 8/10 = 6 2/5.

Попробуйте сложить десятичные дроби. Если вы делаете это в столбик, то будьте внимательны. Разряды всех чисел должны находиться строго друг под другом, - под запятой. Правила сложения точно такие же, как и при действии с . Прибавьте к тому же числу 6,8 другую десятичную дробь - например, 7,3. Запишите тройку под восьмеркой, запятую - под запятой, а семерку - под шестеркой. Складывать начните с последнего разряда. 3+8=11, то есть 1 запишите, 1 запомните. Далее сложите 6+7, получите 13. Прибавьте то, что оставалось в уме и запишите результат - 14,1.

Вычитание выполняется по тому же принципу. Разряды запишите друг под другом, запятую - под запятой. Ориентируйтесь всегда по ней, особенно если количество цифр после нее в уменьшаемом меньше, чем в вычитаемом. Отнимите от заданного числа, например, 2,139. Двойку запишите под шестеркой, единицу - под восьмеркой, остальные две цифры - под следующими разрядами, которые можно обозначить нулями. Получится, что уменьшаемое не 6,8, а 6,800. Выполнив данное действие, вы получите в итоге 4,661.

Действия с отрицательными десятичными дробями выполняются точно так же, как и с целыми числами. При сложении минус выносится за скобку, а в скобках пишутся заданные числа, и между ними ставится плюс. В итоге получается отрицательное число. То есть при сложении -6,8 и -7,3 вы получите тот же самый результат 14,1, но со знаком "-" перед ним. Если вычитаемое больше уменьшаемого, то минус тоже выносится за скобку, из большего числа вычитается меньшее. Вычтите из 6,8 число -7,3. Преобразуйте выражение следующим образом. 6,8 - 7,3= -(7,3 - 6,8) = -0,5.

Для того чтобы умножить десятичные дроби, на время забудьте о запятой. Перемножьте их так, как будто перед вами целые числа. После этого сосчитайте количество знаков, стоящих справа после запятой в обоих сомножителях. Отделите столько же знаков и в произведении. Перемножив 6,8 и 7,3, в итоге вы получите 49,64. То есть справа от запятой у вас окажутся 2 знака, в то время как в множимом и множителе их было по одному.

Разделите заданную дробь на какое-нибудь целое число. Это действие выполняется точно так же, как и с целыми числами. Главное - не забыть про запятую и в начале поставить 0, если количество целых единиц не делится на делитель. Например, попробуйте разделить те же самые 6,8 на 26. В начале поставьте 0, поскольку 6 меньше, чем 26. Отделите его запятой, дальше уже пойдут десятые и сотые. В итоге получится приблизительно 0,26. На самом деле в данном случае получается бесконечная непериодическая дробь, которую можно округлить до нужной степени точности.

При делении двух десятичных дробей воспользуйтесь свойством, что при умножении делимого и делителя на одно и то же число частное не меняется. То есть преобразуйте обе дроби в целые числа, в зависимости от того, сколько знаков стоит после запятой. Если вы хотите разделить 6,8 на 7,3, достаточно умножить оба числа на 10. Получится, что делить нужно 68 на 73. Если же в одном из чисел разрядов после запятой больше, преобразуйте в целое число сначала его, а затем уже и второе число. Умножьте его на то же число. То есть при делении 6,8 на 4,136 увеличьте делимое и делитель не в 10, а в 1000 раз. Разделив 6800 на 1436, получите в результате 4,735.

В виде:

± d m d 1 d 0 , d -1 d -2

где ± — знак дроби: или +, или -,

, — десятичная запятая, которая служит разделителем меж целой и дробной частями числа,

d k — десятичные цифры.

При этом порядок следования цифр до запятой (слева от неё) имеет конец (как min 1-на цифра), а после запятой (справа) — может быть и конечной (как вариант, цифр после запятой может вообще не быть), и бесконечной.

Значением десятичной дроби ± d m d 1 d 0 , d -1 d -2 есть действительное число:

которое равно сумме конечного либо бесконечного количества слагаемых.

Представление действительных чисел при помощи десятичных дробей есть обобщение записи целых чисел в десятичной системе счисления. В представлении целого числа десятичной дробью нет цифр после запятой, и т.о., это представление выглядит так:

± d m d 1 d 0 ,

И это совпадает с записью нашего числа в десятичной системе счисления.

Десятичная дробь - это итог деления 1-цы на 10, 100, 1000 и так далее частей. Эти дроби довольно удобны для вычислений, т.к. они основываются на такой же позиционной системе , на которой построены счёт и запись целых чисел. Благодаря этому запись и правила действий с десятичными дробями практически такие же, как и для целых чисел.

Записывая десятичные дроби не нужно отмечать знаменатель, он определяется местом, занимаемым соответствующей цифрой. Вначале пишем целую часть числа, далее справа ставим десятичную точку. Первая цифра после десятичной точки обозначает число десятых, вторая - число сотых, третья - число тысячных и так далее. Цифры, которые расположены после десятичной точки, являются десятичными знаками .

Например:

Одно из преимуществ десятичных дробей таково, что их очень просто можно привести к виду обыкновенных: число после десятичной точки (у нас это 5047) - это числитель ; знаменатель равен n -ой степени 10, где n - число десятичных знаков (у нас это n = 4 ):

Когда в десятичной дроби нет целой части, значит, перед десятичной точкой ставим нуль:

Свойства десятичных дробей.

1. Десятичная дробь не изменяется, когда справа добавляются нули:

13.6 =13.6000.

2. Десятичная дробь не изменяется, когда удаляются нули, которые расположены в конце десятичной дроби:

0.00123000 = 0.00123.

Внимание! Нельзя удалять нули, которые расположенные НЕ в конце десятичной дроби!

3. Десятичная дробь увеличивается в 10, 100, 1000 и так далее раз, когда переносим десятичную точку на соответственно 1-ну, 2, 2 и так далее позиций правее:

3.675 → 367.5 (дробь увеличилась в сто раз).

4. Десятичная дробь становится меньше в десять, сто, тысячу и так далее раз, когда переносим десятичную точку на соответственно 1-ну, 2, 3 и так далее позиций левее:

1536.78 → 1.53678 (дробь стала меньше в тысячу раз).

Виды десятичных дробей.

Десятичные дроби делятся на конечные , бесконечные и периодические десятичные дроби .

Конечная десятичная дробь - это дробь, содержащая конечное количество цифр после запятой (или их там нет совсем), т.е. выглядит так:

Действительное число можно представить как конечную десятичную дробь лишь в том случае, если это число есть рациональным и при записи его несократимой дробью p/q знаменатель q не имеет простых делителей, которые отличны от 2 и 5.

Бесконечная десятичная дробь .

Содержит бесконечно повторяющуюся группу цифр, которая называется периодом . Период записывается в скобках. Например, 0.12345123451234512345… = 0.(12345) .

Периодическая десятичная дробь - это такая бесконечная десятичная дробь, в которой последовательность цифр после запятой, начиная с некоторого места, является периодически повторяющейся группой цифр. Иными словами, периодическая дробь — десятичная дробь, выглядящая так:

Подобную дробь обычно кратко записывают так:

Группа цифр b 1 … b l , которая повторяется, является периодом дроби , число цифр в этой группе является длиной периода .

Когда в периодической дроби период идет сразу после запятой, значит, дробь является чистой периодической . Когда между запятой и 1-ым периодом есть цифры, то дробь является смешанной периодической , а группа цифр после запятой до 1-го знака периода — предпериодом дроби .

Например , дробь 1,(23) = 1,2323… есть чистой периодической, а дробь 0,1(23)=0,12323… — смешанной периодической.

Основное свойство периодических дробей , благодаря которому их выделяют из всей совокупности десятичных дробей, заключается в том, что периодические дроби и лишь они представляют рациональные числа . Точнее, имеет место следующее:

Любая бесконечная периодическая десятичная дробь представляет рациональное число. Обратно, когда рациональное число раскладывается в бесконечную десятичную дробь, значит, эта дробь будет периодической.

Похожие статьи