Объединенная энергосистема востока. Натурный эксперимент подтвердил возможность восстановления электроснабжения части центрального энергорайона якутии за счет оэс востока. Автоматизированная система диспетчерского управления

АО "Системный оператор Единой энергетической системы", ПАО "Якутскэнерго" и Филиал ПАО "ФСК ЕЭС" МЭС Востока успешно провели натурный эксперимент, доказавший возможность восстановления электроснабжения потребителей Центрального энергорайона (ЦЭР) энергосистемы Республики Саха (Якутия) от Объединенной энергосистемы (ОЭС) Востока путем переноса точки раздела между ними.

Эксперимент проводился по инициативе ПАО "Якутскэнерго" по согласованию с АО "СО ЕЭС" и по решению Штаба по обеспечению безопасности электроснабжения Республики Саха (Якутия). Целью эксперимента стала отработка действий диспетчерского и оперативного персонала при восстановлении электроснабжения расположенных на правом берегу реки Лены улусов (районов) в Центральном энергорайоне Якутской энергосистемы от ОЭС Востока по кабельно-воздушной линии (КВЛ) 220 кВ Нижний Куранах – Майя.

Специалистами филиалов АО "СО ЕЭС" Объединенное управление энергосистемы Востока (ОДУ Востока), Региональное диспетчерское управление энергосистемы Амурской области (Амурское РДУ) при участии специалистов филиала АО "СО ЕЭС" Региональное диспетчерское управление Республики Саха (Якутия) (Якутское РДУ) и ПАО "Якутскэнерго" разработана Программа, определены требования к параметрам электроэнергетического режима ОЭС Востока и ЦЭР Якутской энергосистемы и созданы схемно-режимные условия для питания нагрузки ЦЭР от ОЭС Востока. Управление переключениями осуществлялось по командам диспетчерского персонала Амурского РДУ и Департамента технологического управления ПАО "Якутскэнерго".

В ходе длившегося свыше 21 часа эксперимента точка раздела между ОЭС Востока и ЦЭР энергосистемы Республики Саха (Якутия) была успешно перенесена в глубину Центрального энергорайона, вследствие чего часть потребителей Якутии получила электроэнергию от ОЭС Востока. Максимальное мгновенное значение величины перетока мощности достигло 70 МВт, всего потребителям в центральной части Якутии было передано свыше миллиона кВт.ч электроэнергии.

"Полученные результаты подтвердили возможность восстановления электроснабжения заречных улусов в Центральном энергорайоне Якутской энергосистемы от ОЭС Востока в случае аварий на генерирующем оборудовании этого энергорайона. Также в ходе эксперимента были получены данные, анализ которых позволит разработать мероприятия по оптимизации процесса переключений и сокращения времени перерыва в электроснабжении потребителей при переносе точки раздела между ЦЭР и ОЭС Востока", – отметила директор по управлению режимами – главный диспетчер ОДУ Востока Наталья Кузнецова.

В настоящее время Западный и Центральный энергорайоны энергосистемы Республики Саха (Якутия) с суммарной установленной мощностью электростанций 1,5 ГВт функционируют изолированно от ЕЭС России и оперативно-диспетчерское управление на их территории осуществляет ПАО "Якутскэнерго". В 2016 году в рамках подготовки к осуществлению оперативно-диспетчерского управления энергосистемой Республики Саха (Якутия) в составе Западного и Центрального энергорайонов и организации присоединения этих энергорайонов к 2-й синхронной зоне ЕЭС России – ОЭС Востока – был создан Филиал АО "СО ЕЭС" Якутское РДУ. Принятие им функций оперативно-диспетчерского управления на территории Западного и Центрального энергорайонов Якутской энергосистемы будет осуществлено после внесения Правительством РФ соответствующих изменений в нормативно-правовые документы и исключения Якутской энергосистемы из перечня изолированных.

Минувшим летом на востоке страны произошло яркое событие, которое с полным правом можно назвать значимым для всей отрасли. Без особой помпы, но зато впервые за всю историю Объединенная энергосистема Востока была включена на параллельную синхронную работу с Объединенной энергосистемой Сибири, а значит, и со всей западной частью Единой энергосистемы России.
Следует разъяснить, что ЕЭС России включает в себя две синхронные зоны. В первую входят шесть параллельно работающих объединенных энергосистем (ОЭС) - Северо-Запада, Центра, Юга, Средней Волги, Урала и Сибири. Во вторую - лишь одна-единственная ОЭС Востока. Она объединяет энергосистемы Амурской области, Приморского края, Хабаровского края и ЕАО, а также Южно-Якутский энергорайон. Электрические связи между энергосистемами Сибири и Дальнего Востока существуют еще с середины 1980-х годов - это три линии 220 кВ вдоль Транссибирской и Байкало-Амурской магистралей (первой, пусть и с очень небольшим опережением, появилась связь вдоль БАМа). Однако сам факт существования линий - это одно, а длительная параллельная работа по ним - совсем другое. Последняя просто невозможна из-за недостаточной пропускной способности линий, которые строились не как межсистемные связи, а только для электроснабжения железной дороги и близлежащих населенных пунктов. Таким образом, ОЭС Востока работает изолированно от первой синхронной зоны ЕЭС России - связующие линии разомкнуты на одной из подстанций на территории Забайкальского края. К востоку от этой точки раздела потребители (в первую очередь, Забайкальская железная дорога) получают питание от ОЭС Востока, а к западу - от ОЭС Сибири.

Диспетчерский пункт ОДУ Востока. Последние приготовления к первому опыту параллельной работы обеих синхронных зон ЕЭС России



Точка раздела между синхронными зонами не статична. Десятки раз в год она переносится с одной тяговой подстанции на другую - от Холбона до Сковородино. Делается это главным образом для обеспечения ремонтов - как плановых, так и аварийных - линий, подстанций и т.д. На практике перенос точки раздела сопряжен с необходимостью кратковременного отключения запитанных от межсистемных линий потребителей и, конечно, доставляет неудобства. Самый неприятный эффект - вынужденный перерыв в движении поездов по забайкальскому участку Транссибирской магистрали на перегонах между несколькими тяговыми подстанциями. Продолжительность его, как правило, составляет от 30 минут до двух часов. И если при плановых переносах точки раздела обычно страдает только грузовое сообщение, то при аварийных переносах, случается, останавливаются и пассажирские составы.
В конце июля и в августе Системный оператор (ОАО «СО ЕЭС»), чьей основной функцией является осуществление централизованного оперативно-диспетчерского управления в ЕЭС России, совместно с Федеральной сетевой компанией (ПАО «ФСК ЕЭС») провел испытания по переносу точки раздела без погашения нагрузки. Для этого на непродолжительное время организовывалась параллельная синхронная (то есть с единой частотой электрического тока) работа ОЭС Востока и ОЭС Сибири.

Рабочее место диспетчера

В первую очередь, испытания должны были подтвердить саму возможность кратковременной параллельной работы энергосистем по протяженным - более 1300 километров - линиям 220 кВ, которые никогда для таких целей не предназначались и потому не оснащены соответствующим оборудованием: системами режимной и противоаварийной автоматики. Сложность поставленной задачи определялась уже тем, что подобные испытания проводились в России впервые; выражаясь высокопарным языком, то был шаг в неизведанное.
Точкой синхронизации обеих ОЭС в процессе испытаний стала подстанция 220 кВ Могоча, секционные выключатели которой в ходе недавней реконструкции были оснащены устройствами улавливания и контроля синхронизма (а конкретнее - АПВ УС (КС). Для задания их уставок специалистами Системного оператора были определены допустимый угол синхронного включения и допустимая разница частот в ОЭС Востока и ОЭС Сибири. Также были рассчитаны пределы по статической и динамической устойчивости. Кроме того, поскольку линии не оснащены автоматикой ликвидации асинхронного режима (АЛАР), была организована временная токовая отсечка на подстанции Могоча. Задействовались регистраторы системы мониторинга переходных режимов (СМПР) на Харанорской ГРЭС в Забайкальском крае, дополнительно такие устройства были установлены на подстанциях Могоча и Сковородино. Чуть разъясню: регистраторы СМПР предназначены для сбора в реальном времени информации о параметрах электроэнергетического режима энергосистемы.
Дело в том, что само по себе параллельное включение представляло собой более простую задачу, чем обеспечение последующей параллельной работы. Упомянутый секционный выключатель включался автоматически по команде от устройства синхронизации, когда разница частот и угол между векторами напряжений ОЭС Востока и ОЭС Сибири оказывались в допустимом диапазоне. А вот поддерживать новый режим совместной работы двух огромных энергообъединений, с тем чтобы они аварийно не разделились, было сложнее. В ходе серии опытов управление режимом осуществлялось путем регулирования перетока активной мощности между ОЭС Востока и ОЭС Сибири на величину от 20 до 120 МВт. Регулирование величины перетока и частоты в соединенных энергосистемах производилось с помощью централизованной системы автоматического регулирования частоты и перетоков мощности (ЦС АРЧМ) ОЭС Востока, к которой подключены Зейская и Бурейская ГЭС, а также диспетчерским персоналом ОДУ Востока (филиал Системного оператора) из диспетчерского центра в Хабаровске. Ценнейшая информация, необходимая для определения характеристик и режимных условий параллельной работы ОЭС Востока и ОЭС Сибири, в режиме реального времени фиксировалась регистраторами СМПР и средствами оперативно-информационного комплекса ОАО «СО ЕЭС».
Общая продолжительность времени совместной работы энергообъединений в девяти опытах превысила три часа. Успешно проведенные испытания не только доказали возможность кратковременной параллельной работы Объединенных энергосистем Востока и Сибири, но и позволили экспериментально определить оптимальные параметры настройки ЦС АРЧМ ОЭС Востока, а также дали данные для разработки мероприятия по повышению надежности работы энергосистем.

Исторический момент - на диспетчерском щите впервые отображается переток мощности между ОЭС Востока и ОЭС Сибири через включенный выключатель на подстанции 220 кВ Могоча

Полученные результаты и положительный опыт дают возможность в будущем существенно повысить надежность электроснабжения потребителей путем кратковременного включения на параллельную работу ОЭС Востока и ОЭС Сибири при каждом переносе точек раздела. В этом случае питание всех потребителей, подключенных к межсистемным линиям электропередачи вдоль Транссибирской магистрали в восточной части Забайкальского края, прерываться не будет — потребители даже не заметят момент переключений.
Однако успех испытаний вовсе не означает мгновенного, как по мановению волшебной палочки, изменения ситуации с кратковременным погашением потребителей. Для этого еще предстоит оборудовать устройствами синхронизации секционные выключатели на принадлежащих РЖД двадцати двух подстанциях 220 кВ тягового транзита Ерофей Павлович - Могоча - Холбон. Вопрос о необходимости проведения таких работ был поднят на заседании правительственной комиссии по обеспечению безопасности электроснабжения в ДФО, проведенной 5 сентября во Владивостоке. В результате РЖД было получено поручение выполнить разработку и утвердить план мероприятий, включающий в себя установку устройств синхронизации на секционных выключателях для осуществления переноса точки раздела между ОЭС Востока и ЕЭС России без погашения нагрузки.

Технологи следят за ходом испытаний. Слева - руководитель испытаний директор по управлению режимами - главный диспетчер ОДУ Востока Наталья Кузнецова. На рабочих местах диспетчеров - старший диспетчер Сергей Соломенный и диспетчер Олег Стеценко


Так или иначе, прошедшим летом Системным оператором и ФСК не только был проведен уникальный эксперимент по параллельной работе обеих синхронных зон ЕЭС России, но и созданы практические предпосылки для кардинального повышения надежности электроснабжения Транссибирской железнодорожной магистрали и других потребителей в восточной части Забайкальского края.

Создание управляемой связи энергосистем для повышения надежности и экономичности их работы целесообразно, прежде всего, в тех местах, где имеются сложности в обеспечении надежной параллельной работы. Это межгосударственные линии электропередачи, где, как правило, возникает необходимость разделения энергосистем по частоте, а также «слабые» межсистемные электропередачи, существенно ограничивающие возможности обменов мощностью между параллельно работающими энергосистемами, например, линии электропередачи 220 кВ для связи энергосистем Сибири и Дальнего Востока, проходящие вдоль Байкало-Амурской (северный транзит) и Транссибирской (южный транзит) железнодорожных магистралей протяженностью до 2000 км каждая. Однако без специальных мероприятий параллельная работа энергосистем по северному и южному транзитам невозможна. Поэтому рассматривается объединение, представляющее собой вариант параллельной несинхронной работы энергосистем по южному двухцепному транзиту (на последующих этапах объединения возможно также несинхронное замыкание и северного транзита). Актуальность проблемы состоит в том, что необходимо найти технические решения по обеспечению работы электропередачи 220 кВ Чита-Сковородино, питающей тяговые подстанции Забайкальской железной дороги и одновременно являющейся единственной электрической связью между ОЭС Сибири и Востока. На сегодняшний день эта протяженная связь не обладает требуемой пропускной способностью, а также не отвечает требованиям в части поддержания в диапазонах допустимых значений. Она работает в разомкнутом режиме и имеет точку деления на участке ВЛ-220 Холбон-Ерофей Павлович. Все это обусловливает недостаточную надежность сети 220 кВ, что является причиной неоднократных нарушений электроснабжения тяговых подстанций и сбоев работы устройств сигнализации, блокировок и графика движения поездов. Одним из возможных вариантов несинхронного объединения является использование так называемого асинхронизированного электромеханического преобразователя частоты (АС ЭМПЧ), представляющего собой агрегат из двух машин переменного тока одинаковой мощности с жестко соединенными валами, одна из которых выполнена как асинхронизированная синхронная машина (АСМ), а другая - как АСМ (АС ЭМПЧ типа АСМ+АСМ) или как синхронная машина (АС ЭМПЧ типа АСМ+СМ). Последний вариант конструктивно проще, но синхронная машина подключается к энергосистеме с более жесткими требованиями к . Первая по направлению передачи мощности через АС ЭМПЧ машина работает в режиме двигателя, вторая - в режиме генератора . Система возбуждения каждой АСМ содержит преобразователь частоты с непосредственной связью, питающий трехфазную обмотку возбуждения на шихтованном роторе.
Ранее во ВНИИЭлектромаше и Электротяжмаше (г. Харьков) для АС ЭМПЧ были выполнены эскизные и технические проекты АСМ вертикального (гидрогенераторного) и горизонтального (турбогенераторного) исполнения мощностью от 100 до 500 МВт. Кроме того, НИИ и заводом «Электротяжмаш» была разработана и создана серия из трех опытно-промышленных образцов АС ЭМПЧ-1 из двух АСМ мощностью 1 МВт (то есть на проходную мощность 1 МВт), всесторонне испытанных на полигоне ЛВВИСУ (г. Санкт-Петербург). У преобразователя из двух АСМ четыре степени свободы, то есть одновременно и независимо могут регулироваться четыре параметра режима агрегата. Однако, как показали теоретические и экспериментальные исследования, на АС ЭМПЧ типа АСМ+СМ реализуемы все режимы, возможные на АС ЭМПЧ типа АСМ+АСМ, в том числе и режимы потребления реактивной мощности со стороны обеих машин. Допустимая разность частот объединяемых энергосистем, а также управляемость АС ЭМПЧ определяются «потолочной» величиной возбуждения машин. Выбор места установки АС ЭМПЧ на рассматриваемой трассе обусловлен следующими факторами. 1. По данным ОАО «Институт Энергосетьпроект», в режиме зимнего максимума 2005 г. переток мощности через Могоча составит примерно 200 МВт в направлении от подстанции Холбон в восточную сторону к подстанции Сковородино. Именно величиной этого перетока и определяется установленная мощность агрегата АС ЭМПЧ-200 (или агрегатов).
2. Комплекс с АС ЭМПЧ-200 рассчитан на сдачу «под ключ» с полностью автоматическим управлением. Но с диспетчерского пункта подстанции Могоча и из ОДУ Амурэнерго могут меняться уставки по величине и направлению перетоков активной мощности.
3. Место установки (подстанция Могоча) находится примерно в середине между подстанцией Холбон и мощной подстанцией Сковородино, тем более Харанорская ГРЭС может к указанному времени (то есть к 2005 г.) обеспечить требуемые уровни напряжения на подстанции Холбон. При этом включение АС ЭМПЧ-200 в рассечку линии электропередачи на подстанции Могоча практически разделит связь на два независимых участка с уменьшенными примерно в два раза сопротивлениями и независимыми ЭДС машин агрегата с каждой стороны, что позволит примерно в полтора-два раза увеличить пропускную способность всей двухцепной ЛЭП-220 кВ. В дальнейшем при режимной необходимости увеличения обменной мощности можно рассмотреть установку и второго агрегата АС ЭМПЧ-200 параллельно первому.

Это позволит существенно отодвинуть сооружение -500 кВ и сроки возможного расширения Харанорской ГРЭС. По предварительной оценке при параллельной работе энергосистем Сибири и Дальнего Востока только по южному транзиту предельные по статической устойчивости обменные потоки мощности в сечении Могоча-Аячи составляют без АС ЭМПЧ: в восточном направлении - до 160 МВт, в западном направлении - до 230 МВт.

После установки АС ЭМПЧ проблема статической устойчивости автоматически снимается и потоки соответственно могут составить 200-250 МВт и 300-400 МВт при контроле предельных перетоков по тепловому ограничению отдельных, например, головных участков ЛЭП. Вопрос увеличения обменных перетоков становится особенно актуальным с введением в эксплуатацию Бурейской .

Предполагается, как указывалось, установка АС ЭМПЧ-200 в рассечку ВЛ 220 кВ на подстанции Могоча магистральной двухцепной межсистемной связи с многочисленными промежуточными отборами мощности.

На такой межсистемной связи возможны аварии с потерей электрической связи с мощной энергосистемой и образованием энергорайона с питанием через АС ЭМПЧ-200, то есть с работой АС ЭМПЧ-200 на консольную нагрузку. В таких режимах АС ЭМПЧ-200 не может и не должен поддерживать в общем случае заданное задатчиком доаварийное значение передаваемой мощности.

В то же время он должен сохранить способность регулирования на собственных шинах и частоту вращения вала агрегата. Разработанная для АС ЭМПЧ адаптивная система регулирования требует телеинформации об отключении и включении выключателей примыкающих участков ЛЭП. На основании этой телеинформации она переводит АСМ агрегата со стороны неаварийного участка трассы на управление по частоте вращения вала и со стороны консоли АСМ берет на себя нагрузку энергорайона.

Если эта нагрузка больше установленной мощности АСМ, то АС ЭМПЧ шунтируется с переводом машин в компенсаторный режим. Важно также, что передача телеинформации о векторе за разомкнутым выключателем позволяет без улавливания синхронизма сразу же включить АС ЭМПЧ-200 в нормальную работу безударно после включения отключившегося выключателя.

Многолетними теоретическими и экспериментальными исследованиями, выполненными для комплекса управляемого соединения энергосистем Северного Кавказа и Закавказья на электропередаче 220 кВ Сочи-Бзыби Краснодарэнерго на основе проекта АС ЭМПЧ-200 , подтверждены ожидаемые и известные возможности АС ЭМПЧ по регулированию активной и , напряжений машин и частоты вращения ротора агрегата.

По сути, в пределах конструктивно заложенных возможностей АС ЭМПЧ является абсолютно управляемым элементом для объединения энергосистем, обладающим к тому же демпфирующими возможностями за счет кинетической энергии маховых масс роторов машин агрегата, чего лишены статические преобразователи. Система управления совместно с АРВ машин с системами самовозбуждения и пуска после подачи команды «Пуск» обеспечивает автоматическое тестирование состояния элементов всего комплекса с последующим автоматическим включением в сеть в необходимой последовательности без участия персонала или останов агрегата после подачи команды «Останов». Предусмотрено также ручное включение в сеть и ручное регулирование уставок, аварийное отключение и АПВ . При запуске АС ЭМПЧ-200 в работу достаточно для спокойного включения обеспечить скольжение в предусмотренном диапазоне и уставки, обеспечивающие режим по ЛЭП до размыкания шунтирующих выключателей. Вообще к управлению АС ЭМПЧ-200 на межсистемной связи нужно подходить с той позиции, что структура регулирования должна осуществить требуемое управление работой агрегата в установившихся и неустановившихся режимах и обеспечить выполнение следующих основных функций в электрических системах.

1. Поддержание значений напряжений (реактивных мощностей) в соответствии с уставками в нормальных режимах. Так, например, каждая из машин АС ЭМПЧ способна в пределах, ограниченных номинальными токами, генерировать требуемое значение реактивной мощности или обеспечить без потери устойчивости ее потребление. 2. Управление в нормальных и аварийных режимах величиной и направлением перетока активной мощности в соответствии с уставкой при синхронной и несинхронной работе частей энергосистем, что, в свою очередь, способствует повышению пропускной способности межсистемных связей. 2.1. Регулирование перетока с помощью АС ЭМПЧ-200 по заранее согласованному между объединяемыми энергосистемами графику с учетом суточных и сезонных изменений нагрузок. 2.2. Оперативное регулирование межсистемного перетока вплоть до реверса с одновременным демпфированием нерегулярных колебаний. Если требуется быстро изменить направление передачи активной мощности через агрегат, то, изменяя согласованно уставки по активной мощности на первой и второй машинах, можно практически при постоянной частоте вращения изменять переток активной мощности, преодолевая лишь электромагнитную инерционность контуров обмоток машины. При соответствующих «потолках» возбуждения реверс мощности будет проходить достаточно быстро. Так, для АС ЭМПЧ, состоящего из двух АСМ-200, время полного реверса, от +200 МВт до -200 МВт, как показывают расчеты, составляет 0,24 с (в принципе, оно ограничивается только величиной T"(f). 2.3. Использование АС ЭМПЧ-200 как оперативный источник для поддержания частоты, а также для подавления электромеханических колебаний после больших возмущений в одной из энергосистем или в консольном энергорайоне. 3. Работу на выделенный (консольный) энергорайон потребителей с обеспечением требуемого уровня частоты и напряжения. 4. Демпфирование колебаний в аварийных режимах работы электрических систем, существенное уменьшение возмущений, передаваемых из одной части электрических систем в другую. В переходных режимах благодаря возможности АС ЭМПЧ изменять в заданных пределах частоту вращения, то есть кинетическую энергию агрегата, возможно интенсивное демпфирование
колебаний и в течение определенного времени возмущение, возникшее в одной части энергосистемы, не будет передаваться в другую. Так, при к.з. или АПВ в одной из энергосистем агрегат будет разгоняться или тормозиться, однако величина активной мощности АСМ, подключенной к другой энергосистеме, будет оставаться при соответствующем управлении неизменной. 5. Перевод в случае необходимости обеих машин агрегата в режим работы синхронного компенсатора. Стоимость сооружения преобразовательной подстанции с АС ЭМПЧ-200 обусловливается составом оборудования и, по сути, ничем не отличается от обычно сооружаемых подстанций с синхронными компенсаторами. Площадка для сооружения устройства должна обеспечивать удобства подвоза оборудования, компактность монтажа и связи с существующим силовым оборудованием на подстанции Могоча. Для упрощения всей системы подстанции необходим вариант без выделения АС ЭМПЧ-200 в отдельную подстанцию. Для присоединения к энергосистемам агрегата, машины которого рассчитаны на полную мощность= 200/0,95 = 210,5 МВ А (по данным ОАО «Электросила», С-Петербург и ), требуются два трансформатора на 220/15,75 кВ. Технико-экономическое сравнение АС ЭМПЧ со статическими преобразователями проведено для передаваемой мощности 200 МВт. Сравниваемые параметры приведены в таблице. Вставка постоянного тока (ВПТ) - классический вариант. В таблице указана передаваемая через ВПТ мощность 355 МВт, что соответствует одному блоку Выборгской подстанции. В указана удельная стоимость ВПТ (с учетом подстанционного оборудования), которая приведена в таблице. КПД подстанции ВПТ (с учетом синхронных компенсаторов, силовых трансформаторов и фильтров) на уровне 0,96.
ВПТ на запираемых (двухоперационных) ключах с ШИМ и параллельно включенными обратными диодами . Известно, что внутренние потери запираемых ключей в 1,5-2 раза больше, чем у обычных тиристоров, поэтому КПД такого ВПТ со специальными силовыми трансформаторами с учетом фильтров высокой частоты коммутаций составляет 0,95. Вопрос стоимости четко не определен. Однако в указывается удельная стоимость ВПТ на основе STATCOM 165 долл./кВт и выше.
Для ВПТ по типу Directlink с двухуровневым формированием кривой выходного удельная стоимость выше и составляет 190 долл./кВт. В таблице приведены данные как для варианта STATCOM, так и для варианта на основе Directlink.

По данным ОАО «Электросила», у АС ЭМПЧ-200 из двух АСМ = 98,3 % (по - 98,42 %) удельная стоимость установленной мощности cоставляет 40 долл./кВт. Тогда стоимость собственно агрегата преобразователя составит 16 млн долл. В соответствии с базовая стоимость подстанции переменного тока 220 кВ с двумя трансформаторами составляет 4 млн долл., а удельная стоимость преобразователя с подстанцией составит =(16+4) 10 6 /400 10 3 = 50 долл./кВт. С учетом трансформаторов общий КПД составит = 0,983 2 0,997 2 = 0,96.
Наряду с приведенными выше вариантами нужно рассмотреть и вариант преобразователя с использованием эксплуатируемых в энергосистемах синхронных компенсаторов типа КСВБМ с водородным охлаждением наружной установки . Следует отметить, что в АС ЭМПЧ типа АСМ+СМ в качестве синхронной машины может использоваться без каких-либо переделок синхронный компенсатор КСВБМ 160-15У1 во всех режимах при соблюдении условия для тока статора. Например, при = 1 мощность P = ±160 МВт; при = 0,95 (как в проекте ОАО «Электросила») P = 152 МВт, Q = ±50 МВ А, а ЭДС Е=2,5<Еном =3 отн.ед.

По данным разработчика ОАО «Уралэлектротяжмаш», синхронный компенсатор КСВБМ 160-15У1 стоит 3,64 10 6 долл. Если ротор в тех же габаритах выполнен с неявнополюсной шихтовкой (конструкция СК это позволяет), то стоимость возрастет в 1,5 раза и составит 5,46 10 6 долл. и тогда полная стоимость преобразователя типа АСМ +СМ (то есть из серийного и переоборудованного синхронных компенсаторов) составит 9 10 6 долл. (см. табл.). Здесь следует отметить, что
ГОСТ 13109-97 на качество электрической энергии (Постановление Госкомитета по стандартизации и сертификации РФ, 1998 г.) допускает следующие отклонения частоты: нормальные ±0,2 Гц в течение 95% времени, предельные ±0,4 Гц в течение 5% времени суток. Учитывая, что далее будет срабатывать АЧР, можно утверждать, что заложенное в АСМ потолочное значение напряжения возбуждения на скольжение с частотой ±2 Гц обеспечит надежную работу АС ЭМПЧ и при других больших системных возмущениях. При номинальном токе статора потери в СК составляют 1800 кВт и тогда КПД равен = 0,988. Взяв КПД переоборудованного из СК АСМ таким же, как в проекте ОАО «Электросила», с учетом трансформаторов получим: = 0,988 0,983 0,997 2 = 0,966.
В таблице приведены данные для двух агрегатов типа АСМ+СМ в параллель, что позволяет перекрыть ожидаемое увеличение пропускной способности транзита при установке преобразователя на подстанции Могоча. При этом удельная стоимость меньше, а КПД больше, чем у всех других вариантов. Следует также подчеркнуть очевидное преимущество - компенсаторы КСВБМ предназначены для наружной установки при температурах окружающего воздуха от -45 до +45 o С (то есть вся технология уже отработана), поэтому нет необходимости в сооружении машинного зала для агрегатов АС ЭМПЧ, а нужен лишь корпус для вспомогательных устройств площадью, как требуют строительные нормы, два шестиметровых пролета в ширину на шесть шестиметровых пролетов в длину, то есть 432 м 2 . Тепловые расчеты компенсаторов
выполняются как для водородного охлаждения, так и для воздушного охлаждения. Поэтому упомянутый двухагрегатный АС ЭМПЧ может длительно работать на воздушном охлаждении при нагрузке в 70 % от номинальной, обеспечивая требуемый переток 200 МВт.
Кроме того, институтом Энергосетьпроект разработан оригинальный типовой проект установки СК мощностью 160 МВ А с реверсивным бесщеточным возбуждением, который позволяет существенно уменьшить объем строительных работ, ускоренно осуществить монтаж и ввод СК в работу и значительно сократить стоимость их установки.

ВЫВОДЫ
1. Несинхронное параллельное объединение ОЭС Сибири и Дальнего Востока по южному двухцепному транзиту 220 кВ с помощью асинхронизированного электромеханического преобразователя частоты (АС ЭМПЧ) по сравнению с известными ВПТ на основе STATKOM и DIRECTLINK по технико-экономическим показателям является предпочтительным.
2. Многолетние теоретические и экспериментальные исследования и выполненные проекты показали возможности АС ЭМПЧ по регулированию активной и реактивной мощностей, напряжений машин и частоты вращения ротора агрегата. Установкой преобразователя на подстанции Могоча транзит Холбон - Сковородино практически делится пополам, поэтому пропускная способность этого транзита возрастет в 1,5-2 раза, что позволит отодвинуть сроки строительства ЛЭП-500 кВ и сроки расширения Харанорской ГРЭС.
3. Предварительное технико-экономическое сравнение преобразователей показало, что сооружение подстанции с ВПТ на запираемых ключах с ШИМ на передаваемую мощность 200 МВт на основе проекта Directlink стоит 76 млн долл., а на основе проекта STATKOM - 66 млн долл. В то же время АС ЭМПЧ-200 типа АСМ+АСМ по данным ОАО «Электросила» и НИИ «Электротяжмаш» (г. Харьков) стоит 20 млн долл.
4. У АС ЭМПЧ типа АСМ+СМ на основе серийно выпускаемых ОАО «Уралэлектротяжмаш» и эксплуатируемых в энергосистемах синхронных компенсаторов с водородным и воздушным охлаждением для наружной установки КСВБМ 160 МВ А удельная стоимость установленной мощности АС ЭМПЧ с полным подстанционным оборудованием составляет 40 долл./кВт и при этом КПД не ниже других типов преобразователей. Учитывая малый объем строительно-монтажных работ, низкую удельную стоимость и высокий КПД, именно такую подстанцию с АС ЭМПЧ полностью на отечественном оборудовании можно рекомендовать для несинхронного объединения ОЭС Сибири и Дальнего Востока.

ОЭС Востока – 50

Единый Восток

Решение о создании Объединенной энергетической системы Востока на базе энергосистем Амурской области, Приморского и Хабаровского края и Еврейской автономной области (со временем в ОЭС Востока влилась энергосистема южной части Якутии) было принято Министерством энергетики СССР. Тем же приказом за номером 55А было создано Оперативно-диспетчерское управление (ОДУ) Востока, теперь являющееся филиалом АО «Системный оператор ЕЭС». Путь от решения до создания ОЭС занял два года – 15 мая 1970 года были объединены Амурская и Хабаровская энергосистемы. И хотя в ДФО и по сей день сохранились изолированные энергосистемы (на севере Якутии, в Магаданской и Сахалинской областях, на Камчатке и Чукотке, а также Николаевский энергорайон Хабаровского края), с тех пор ОЭС Востока стала важнейшей частью энергетики региона. В нее входят электростанции суммарной установленной мощностью 9,5 ГВт (по состоянию на 1 января 2018 года). ОЭС Востока была связана с ОЭС Сибири тремя ЛЭП 220 кВ, и в 2015 году они были впервые включены на параллельную синхронную работу.

Подняться над местечковыми интересами

По словам одного из прежних руководителей ОДУ Востока Сергея Другова, развитие ОЭС Востока далеко не всегда шло гладко – в частности, мешали местечковые интересы. «Например, руководство Амурской области в свое время не было заинтересованно в строительстве ЛЭП в Хабаровском крае, так как на ее территории появился мощный источник – Зейская ГЭС. Руководство Хабаровского края негативно относилось к строительству Бурейской ГЭС, считая необходимым строить энергообъекты только на территории края и только те, которые замыкаются на собственного ­потребителя», – вспоминает Сергей Другов.

Однако кризисы энергоснабжения (Амурская область – 1971–1973 годы; Хабаровский край – 1981–1986 годы; Приморский край – 1998–2001 годы) подтолкнули регионы и их руководителей к объединению усилий. Нужны были мощные ЛЭП между генерирующими мощностями и основными центрами потребления. Первые сосредоточены на западе региона (Зейская и Бурейская ГЭС, Нерюнгринская ГРЭС), вторые – на юго-востоке (в Приморье и Хабаровске).

Дальше – больше

Последние годы потребление электроэнергии ОЭС Востока и энергосистем субъектов федерации заметно растет, время от времени обновляя исторические максимумы. У ОЭС Востока есть задел по мощности, позволяющий, например, экспорт электро­энергии в соседнюю КНР, но ­чтобы избежать проблем в самом ближайшем будущем, нужны и новые генерирующие объекты, и дальнейшее развитие сетей.

В этом направлении многое делается. Уже работает вторая очередь Благовещенской ТЭЦ (дополнительная установленная электрическая мощность – 120 МВт, тепловая – 188 Гкал/ч). На третий квартал 2018 года намечен пуск во Владивостоке ТЭЦ «Восточная» (установленная электрическая мощность составит 139,5 МВт, тепловая – 421 Гкал/ч; станция обеспечит теплом и горячей водой более 300 тысяч потребителей города). В следующем году должна дать ток новая ТЭЦ в г. Советская Гавань (установленная электрическая мощность составит 120 МВт, тепловая – 200 Гкал/ч).

К 2022 году объем спроса на электрическую энергию в ОЭС Востока прогнозируется на уровне 42,504 млрд. кВт·ч (среднегодовой темп прироста за период 2016 - 2022 годов - 4,0%) (рисунок 2.9) .

Прогноз спроса на электрическую энергию на период 2016 - 2022 годов учитывает изменения в территориальной структуре энергозоны Востока - присоединение к ОЭС Востока изолированных энергорайонов Республики Саха (Якутия) - Западного и Центрального, потребление электрической энергии которых составляет более 70% от суммарного потребления по централизованной зоне энергоснабжения Республики Саха (Якутия). Присоединение изолированных энергорайонов определяет высокую динамику показателей спроса на электрическую энергию в период 2016 - 2017 годов.

Спрос на электрическую энергию по ОЭС Востока без учета присоединения Центрального и Западного энергорайонов Республики Саха (Якутия) на уровне 2022 года в рассматриваемом варианте оценивается в объеме 36,5 млрд. кВт·ч со среднегодовым приростом за период 2016 - 2022 годов 1,8%, при соответствующем показателе по ЕЭС России 0,6%. Опережающие темпы роста спроса на электрическую энергию в ОЭС Востока в рассматриваемой перспективе определяются экономическим развитием региона. Рост спроса на электрическую энергию связан, прежде всего, с предстоящим развитием промышленных производств с учетом реализации новых масштабных проектов - потенциальных резидентов промышленно-производственных зон, в их числе:

металлургические производства, представленные крупными инвестиционными проектами - формирование горно-металлургического кластера в Приамурье на базе рудных месторождений, в том числе Кимкано-Сутарский ГОК (ввод в эксплуатацию с 2016 года), разработка золоторудных месторождений Амурской области - Маломырский, Покровский и Албынский рудники;

добыча угля на территории Южно-Якутского энергорайона - Эльгинское месторождение и шахта Чульмаканская, и Хабаровского края - ОАО "Ургалуголь";

производства по переработке нефти и газа и создание новых производств нефтегазохимического комплекса, связанных с развитием систем магистральных нефте- и газопроводов, крупнейший из проектов - строительство нефтехимического комплекса ОАО "НК "Роснефть" в Находке ЗАО "ВНХК" (совместный проект с китайской корпорацией ChemChina), завод по производству сжиженного природного газа ООО "Газпром СПГ Владивосток" с вводом в эксплуатацию первой очереди в 2020 году, "Амурский нефтеперерабатывающий завод" в поселке Березовка Ивановского района - комплекс по переработке нефти и транспортировке нефтепродуктов (мощность переработки до 6 млн. тонн сырья в год с учетом поставок нефтепродуктов на внутренний рынок и экспорта в Китай);

развитие судостроительных предприятий на базе Дальневосточного центра судостроения и судоремонта, основными направлениями которого являются модернизация судоремонтных производств и создание новых мощностей для реализации проектов по выпуску современной морской техники - Приморский край;

реализация проекта "Космодром Восточный" в Амурской области;

реализация проектов на территориях опережающего развития (ТОР), в их числе ТОР Надеждинская (создание логистического центра, технопарка и сопутствующих производств) и ТОР Михайловская (агропромышленная специализация) в Приморском крае.

В части транспортной инфраструктуры развитие получат морские порты (транспортно-логистические площадки):

в Хабаровском крае - порт Ванино, где будут созданы специализированный угольный перегрузочный комплекс ОАО "Мечел", терминал по перевалке угля в бухте Мучка ООО "Сахатранс", угольный перегрузочный терминал в районе мыса Бурый ООО "Дальневосточный Ванинский порт", в том числе для обслуживания перевалки угля с Элегестского месторождения (Республика Тыва);

в Приморском крае - ООО "Морской порт "Суходол" - специализированный грузовой порт в районе бухты Суходол (Шкотовский район), ООО "Порт Вера" в районе бухты Беззащитная на территории ЗАТО города Фокино - морской терминал с сопутствующей инфраструктурой, ОАО "Торговый порт Посьет" в Хасанском районе - модернизация и строительство специализированного угольного терминала с увеличением мощности до 12 млн. т в год.

АО "АК "Транснефть" ведет работы по расширению первой и второй очередей трубопроводной системы "Восточная Сибирь - Тихий океан": ВСТО-1 до 80 млн. тонн в год и ВСТО-2 до 50 млн. тонн к 2020 году. Это определяет строительство трех НПС в Амурской области и НПС в Хабаровском крае, а также увеличение мощности на существующих НПС в Амурской области и Южно-Якутском энергорайоне Республики Саха (Якутия).

В связи с присоединением изолированных энергорайонов изменяется территориальная структура потребления электрической энергии ОЭС Востока - существенно возрастает доля энергосистемы Республики Саха (Якутия) - до 19% в 2022 году (5,3% - доля Южно-Якутского энергорайона Республики Саха (Якутия) в ОЭС Востока в настоящее время).

Западный энергорайон Республики Саха (Якутия) включает в себя Айхало-Удачнинский, Мирнинский, Ленский промышленные узлы и группу вилюйских сельскохозяйственных районов. Основные профилирующие производства - добыча и обработка алмазов, являющаяся традиционной специализацией региона, и нефтедобыча. Эти энергоемкие производства определяют специфику структуры потребления электрической энергии как Западного энергорайона Республики Саха (Якутия) (доля добывающих производств не менее 57% в структуре промышленного потребления электрической энергии), так и всей энергосистемы Республики Саха (Якутия), а именно: высокую долю промышленного производства в суммарной структуре потребления электрической энергии (43% в целом по Якутской энергосистеме, в том числе 37% приходится на добычу полезных ископаемых) на фоне сравнительно низкой доли, характерной для ОЭС Востока в настоящее время (24% и 6%, соответственно). Рост спроса на электрическую энергию на территории Западного энергорайона Республики Саха (Якутия) в рассматриваемой перспективе будет определяться развитием профилирующих производств - нефтедобычи (освоение центрального блока Среднеботуобинского НГКМ) и транспортированием нефти по трубопроводной системе "Восточная Сибирь - Тихий Океан", добычей и обработкой алмазов (совершенствование технологии добычи, отработки подземных алмазоносных трубок "Айхал", "Интернациональная", "Ботуобинская", "Нюрбинская", развитие ГОК "Удачнинский", связанное с переходом от карьерной к шахтной добыче с вовлечением в эксплуатацию глубоких горизонтов месторождения), а также созданием производственной и социальной инфраструктуры.

Похожие статьи

  • Стивен Кови Восьмой навык

    Восьмой навык. От эффективности к величию Стивен Кови (Пока оценок нет) Название: Восьмой навык. От эффективности к величию Автор: Стивен Кови Год: 2010 Жанр: Зарубежная деловая литература, Зарубежная психология, Менеджмент и кадры,...

  • Книга клинок выковывается читать онлайн Иллюстрации к «Глоссариймк»

    Мастер клинков 2- Клинок выковываетсяИллюстрацииИллюстрации к «Глоссариймк»ПрологНочью я спал плохо, неудобные узкие деревянные нары и отсутствие одеяла – а в бараке было довольно холодно – долго не давали мне заснуть. Только под утро я...

  • Книга мавр сделал свое дело читать онлайн

    Мужчине на вид было около сорока. Дорогой костюм, галстук с золотой булавкой. Он рывком ослабил узел галстука, страдальчески морщась. Интеллигентное лицо с аккуратной бородкой, тонким носом и темными гипнотическими глазами сейчас вряд ли...

  • Все о дне открытых дверей в вузах и колледжах Что такое день открытых дверей в институте

    Практически каждый мало-мальски известный вуз несколько раз в год проводит день открытых дверей. День открытых дверей – это мероприятие, ориентированное на учащихся старших классов и их родителей. Проводится с целью ознакомления...

  • На что обратить внимание при выборе школы

    В Москве функционируют сотни различных организаций, которые предлагают каждому пройти уникальные . Количество желающих исчисляется тысячами, так как английский присутствует во многих научных и бизнес сферах. Однако не секрет, что даже...

  • Лучшие мобильные приложения для изучения английского языка

    Вот и настала осень. Период, когда кончилось лето и начались школьные и институтские занятия. А вот знание английского языка актуально для всех возрастных групп и сейчас самое время начать его учить. Для этого нужно опять сидеть за...