Функции на отрезке. Непрерывность функции на отрезке. Свойства функций, непрерывных на отрезке. Ищем наименьшее и наибольшее значения функции вместе

На рисунках ниже показано, где функция может достигать наименьшего и наибольшего значения. На левом рисунке наименьшее и наибольшее значения зафиксированы в точках локального минимума и максимума функции. На правом рисунке - на концах отрезка.

Если функция y = f (x ) непрерывна на отрезке [a , b ] , то она достигает на этом отрезке наименьшего и наибольшего значений . Это, как уже говорилось, может произойти либо в точках экстремума , либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции , непрерывной на отрезке [a , b ] , нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.

Пусть, например, требуется определить наибольшее значение функции f (x ) на отрезке [a , b ] . Для этого следует найти все её критические точки, лежащие на [a , b ] .

Критической точкой называется точка, в которой функция определена , а её производная либо равна нулю, либо не существует. Затем следует вычислить значения функции в критических точках. И, наконец, следует сравнить между собой по величине значения функции в критических точках и на концах отрезка (f (a ) и f (b ) ). Наибольшее из этих чисел и будет наибольшим значением функции на отрезке [a , b ] .

Аналогично решаются и задачи на нахождение наименьших значений функции .

Ищем наименьшее и наибольшее значения функции вместе

Пример 1. Найти наименьшее и наибольшее значения функции на отрезке [-1, 2] .

Решение. Находим производную данной функции . Приравняем производную нулю () и получим две критические точки: и . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке достаточно вычислить её значения на концах отрезка и в точке , так как точка не принадлежит отрезку [-1, 2] . Эти значения функции - следующие: , , . Из этого следует, что наименьшее значение функции (на графике ниже обозначено красным), равное -7, достигается на правом конце отрезка - в точке , а наибольшее (тоже красное на графике), равно 9, - в критической точке .

Если функция непрерывна в некотором промежутке и этот промежуток не является отрезком (а является, например, интервалом; разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок), то среди значений функции может и не быть наименьшего и наибольшего. Так, например, функция, изображённая на рисунке ниже, непрерывна на ]-∞, +∞[ и не имеет наибольшего значения.

Однако для любого промежутка (закрытого, открытого или бесконечного) справедливо следующее свойство непрерывных функций.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Пример 4. Найти наименьшее и наибольшее значения функции на отрезке [-1, 3] .

Решение. Находим производную данной функции как производную частного:

.

Приравниваем производную нулю, что даёт нам одну критическую точку: . Она принадлежит отрезку [-1, 3] . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Сравниваем эти значения. Вывод: , равного -5/13, в точке и наибольшего значения , равного 1, в точке .

Продолжаем искать наименьшее и наибольшее значения функции вместе

Есть преподаватели, которые по теме нахождения наименьшего и наибольшего значений функции не дают студентам для решения примеры сложнее только что рассмотренных, то есть таких, в которых функция - многочлен либо дробь, числитель и знаменатель которой - многочлены. Но мы не ограничимся такими примерами, поскольку среди преподавателей бывают любители заставить студентов думать по полной (таблице производных). Поэтому в ход пойдут логарифм и тригонометрическая функция.

Пример 8. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции как производную произведения :

Приравниваем производную нулю, что даёт одну критическую точку: . Она принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Результат всех действий: функция достигает наименьшего значения , равного 0, в точке и в точке и наибольшего значения , равного e ² , в точке .

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Пример 9. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции:

Приравниваем производную нулю:

Единственная критическая точку принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Вывод: функция достигает наименьшего значения , равного , в точке и наибольшего значения , равного , в точке .

В прикладных экстремальных задачах нахождение наименьшего (наибольшего) значений функции, как правило, сводится к нахождению минимума (максимума). Но больший практический интерес имеют не сами минимумы или максимумы, а те значения аргумента, при которых они достигаются. При решении прикладных задач возникает дополнительная трудность - составление функций, описывающих рассматриваемое явление или процесс.

Пример 10. Резервуар ёмкостью 4 , имеющий форму параллелепипеда с квадратным основанием и открытый сверху, нужно вылудить оловом. Каковы должны быть размеры резервуара, чтобы на его покрытие ушло наименьшее количество материала?

Решение. Пусть x - сторона основания, h - высота резервуара, S - площадь его поверхности без крышки, V - его объём. Площадь поверхности резервуара выражается формулой , т.е. является функцией двух переменных . Чтобы выразить S как функцию одной переменной, воспользуемся тем, что , откуда . Подставив найденное выражение h в формулу для S :

Исследуем эту функцию на экстремум. Она определена и дифференцируема всюду в ]0, +∞[ , причём

.

Приравниваем производную нулю () и находим критическую точку . Кроме того, при производная не существует, но это значение не входит в область определения и поэтому не может быть точкой экстремума. Итак, - единственная критическая точка. Проверим её на наличие экстремума, используя второй достаточный признак. Найдём вторую производную . При вторая производная больше нуля (). Значит, при функция достигает минимума . Поскольку этот минимум - единственный экстремум данной функции, он и является её наименьшим значением . Итак, сторона основания резервуара должна быть равна 2 м, а его высота .

Для самопроверки при расчётах можно воспользоваться

Определение и формулировки основных теорем для функций, непрерывных на отрезке. Сюда входят: первая теорема Вейерштрасса об ограниченности непрерывной на отрезке функции; вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции; теорема Больцано – Коши о промежуточном значении.

Содержание

См. также: Непрерывность функции в точке - свойства и теоремы

Определения и теоремы

Определение функции, непрерывной на отрезке
Функция называется непрерывной на отрезке (при ), если она непрерывна во всех точках открытого интервала (при ) и непрерывна справа и слева в точках a и b , соответственно.

Первая теорема Вейерштрасса об ограниченности непрерывной на отрезке функции

Если функция непрерывна на отрезке , то она ограничена на этом отрезке.
Доказательство

Определение достижимости максимума (минимума)
Функция достигает своего максимума (минимума) на множестве , если существует такой аргумент , для которого
для всех .

Определение достижимости верхней (нижней) грани
Функция достигает своей верхней (нижней) грани на множестве , если существует такой аргумент , для которого
.

Легко заметить, что эти определения эквивалентны. Если при ,
, то .
Если , то .

Различие между максимумом (минимумом) и верхней (нижней) гранью в том, что максимум (минимум) принадлежит множеству (в данном случае множеству значений функции), а верхняя (нижняя) грань может не принадлежать этому множеству. Пусть, например, на открытом интервале задана функция . На этом интервале функция имеет верхнюю и нижнюю грани:
.
Но максимума и минимума не имеет. Действительно, для любого всегда можно указать такие числа и , принадлежащие , значения функции от которых будут больше и меньше :
.
На отрезке функция имеет как верхнюю и нижнюю грани, так максимум и минимум:
.
Также верхняя (нижняя) грань может равняться плюс (минус) бесконечности: , а максимум (минимум) не может быть бесконечным числом.

Любое множество, в котором определены операции сравнения, имеет верхнюю и нижнюю грани.

Вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции

Непрерывная на отрезке функция достигает на нем своих верхней и нижней граней или, что тоже самое, достигает на отрезке своего максимума и минимума.
Доказательство

Эта теорема означает, что существуют такие точки и , принадлежащие отрезку : , значения функции в которых равны, соответственно, нижней и верхней граням:
.
Поскольку, исходя из определений верхней и нижней граней:
при ,
при ,
и поскольку , то и являются минимумом и максимумом функции на отрезке .

Вторая теорема Больцано - Коши о промежуточном значении

Пусть функция непрерывна на отрезке . И пусть C есть произвольное число, находящееся между значениями функции на концах отрезка: и . Тогда существует точка , для которой
.
непрерывна на отрезке . И пусть . Тогда функция принимает на отрезке все значения из и только эти значения:
при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Определение

Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `ainR`. Точка `a` называется точкой локального максимума функции `f`, если существует `epsilon` - окрестность точки `a` что для любого `x!=a` из этой окрестности `f(x)

Если выполнено неравенство `f(x)>f(a)`, то `a` называется точкой локального минимума функции `f`.

Точки локального максимума и локального минимума называют точками локального экстремума.

Теорема 5.1 (Ферма)

Если точка `a` является точкой локального экстремума функции `y=f(x)` и функция `f` имеет производную в этой точке, то `f^"(a)=0`.

Физический смысл: при одномерном движении с возвращением в точке максимального удаления должна быть остановка. Геометрический смысл: касательная в точке локального экстремума горизонтальна.

Замечание.

Из теоремы Ферма следует, что если функция имеет экстремум в точке `a`, то в этой точке производная функции либо равна нулю, либо не существует. Например, функция `y=|x|` имеет минимум в точке `x=0`, а производная в этой точке не существует (см. пример 4.2). Точки, в которых функция определена, а производная равна нулю или не существует, будем называть критическими .

Итак, если у функции имеются точки экстремума, то они лежат среди критических точек (критические точки «подозрительны» на экстремум). Для формулировки условий, обеспечивающих наличие экстремума в критической точке, нам потребуется следующее понятие.

Напомним, что под промежутком понимается интервал (конечный или бесконечный), полуинтервал или отрезок числовой прямой.

Определение

Пусть функция `y=f(x)` определена на промежутке `I`.

1) Функция `y=f(x)` возрастает

2) Функция `y=f(x)` убывает на `I`, если для любых `x,yinI`, `xf(y)`.

Если функция возрастает или убывает на `I`, то говорят, что функция монотонна на промежутке `I`.

Условия монотонности . Пусть функция `y=f(x)` определена на промежутке `I` с концами `a`, `b`, дифференцируема на `(a, b)` и непрерывна в концах, если они принадлежат `I`. Тогда

1) если `f^"(x)>0` на `(a, b)`, то функция возрастает на `I`;

2) если `f^"(x)<0` на `(a, b)`, то функция убывает на `I`.

Условия экстремума . Пусть функция `y=f(x)` определена на интервале `(ab)`, непрерывна в точке `x_0 in(a, b)` и дифференцируема на `(a,x_0) uu (x_0,b)`. Тогда

1) если `f^"(x)>0` на `(a;x_0)` и `f^"(x)<0` на `(x_0;b)`, то `x_0` - точка локального максимума функции `f`;

2) если `f^"(x)<0` на `(a;x_0)` и `f^"(x)>0` на `(x_0;b)`, то `x_0` - точка локального минимума функции `f`.

Пример 5.1

Исследовать функцию `y=x^3-3x` на монотонность и экстремумы на области определения.

Данная функция определена на `R` и дифференцируема в каждой точке (см. следствие теоремы 4.2), причём `y^"=3(x^2-1)`. Так как `y^"<0` при `x in(-1,1)`; `y^">0` при `x in(-oo,-1)uu(1,+oo)`, то функция возрастает на лучах `(-oo,-1]` и ``. По условию экстремума `x=-1` - точка локального максимума, а `x=1` - точка локального минимума. Так как `y^"=0` только в точках `x=1` и `x=-1`, то по теореме Ферма других точек экстремума у функции нет.

Рассмотрим важный класс задач, в которых используется понятие производной - задачи нахождения наибольшего и наименьшего значения функции на отрезке.

Пример 5.2

Найти наибольшее и наименьшее значение функции `y=x^3-3x` на отрезке: а) `[-2;0]`; б) ``.

а) Из примера 5.1 следует, что функция возрастает на `(-oo,-1]` и убывает на `[-1,1]`. Так что `y(-1)>=y(x)` при всех `x in[-2;0]` и `y_"наиб"=y(-1)=2` - наибольшее значение функции на отрезке `[-2;0]`. Чтобы найти наименьшее значение, нужно сравнить значения функции на концах отрезка. Поскольку `y(-2)=-2`, а `y(0)=0`, то `y_"наим"=-2` - наименьшее значение функции на отрезке `[-2;0]`.

б) Так как на луче ``, поэтому `y_"наим"=y(1)=-2`, `y_"наиб"=y(3)=18`.

Замечание

Отметим, что непрерывная на отрезке функция всегда имеет наибольшее и наименьшее значение.

Пример 5.3

Найти наибольшее и наименьшее значение функции `y=x^3-12|x+1|` на отрезке `[-4;3]`.

Отметим, что функция непрерывна на всей числовой прямой. Обозначим `f_1(x)=x^3+12(x+1)`, `f_2(x)=x^3-12(x+1)`. Тогда `y=f_1(x)` при `-4<=x<=-1` и `y=f_2(x)` при `-1<=x<=3`. Находим `f_1^"(x)=3x^2+12`, `f_2^"(x)=3x^2-12`. Уравнение `f_1^"(x)=0` не имеет действительных корней, а уравнение `f_2^"(x)=0` имеет два действительных корня `x_1=-2`, `x_2=2`, из которых интервалу `(-1;3)` принадлежит только точка `x_2`. В точке `x=-1` функция определена, но не имеет производной (можно, например, провести рассуждения, аналогичные рассуждениям примера 4.2). Итак, имеется две критические точки: `x=-1` и `x=2`. Производная `y^"(x)=f_1^"(x)>0` на `(-4;-1)`, `y^"(x)=f_2^"(x)<0` на `(-1;2)` и `y^"(x)=f_2^"(x)>0` на `(2;3)`. Запишем все исследования в таблице:

`y_"наиб"=-1`; `y_"наим"=-100`.

Определение . Если функция f (x ) определена на отрезке [a, b ], непрерывна в каждой точке интервала (a, b ), в точке a непрерывна справа, в точке b непрерывна слева, то говорят, что функция f (x ) непрерывна на отрезке [a, b ].

Другими словами, функция f (x ) непрерывна на отрезке [a, b ], если выполнены три условия:

1) "x 0 Î(a, b ): f (x ) = f (x 0);

2) f (x ) = f (a );

3) f (x ) = f (b ).

Для функций, непрерывных на отрезке, рассмотрим некоторые свойства, которые сформулируем в виде следующих теорем, не проводя доказательств.

Теорема 1 . Если функция f (x ) непрерывна на отрезке [a, b ], то она достигает на этом отрезке своего наименьшего и своего наибольшего значения.

Эта теорема утверждает (рис. 1.15), что на отрезке [a, b ] найдется такая точка x 1 , что f (x 1) £ f (x ) для любых x из [a, b ] и что найдется точка x 2 (x 2 Î[a, b ]) такая, что "x Î[a, b ] (f (x 2) ³ f (x )).

Значение f (x 1) является наибольшим для данной функции на [a, b ], а f (x 2) – наименьшим. Обозначим: f (x 1) = M , f (x 2) = m . Так как для f (x ) выполняется неравенство: "x Î[a, b ] m £ f (x ) £ M , то получаем следующее следствие из теоремы 1.

Следствие . Если функция f (x ) непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема 2 . Если функция f (x ) непрерывна на отрезке [a,b ] и на концах отрезка принимает значения разных знаков, то найдется такая внутренняя точка x 0 отрезка [a, b ], в которой функция обращается в 0, т.е. $x 0 Î (a, b ) (f (x 0) = 0).

Эта теорема утверждает, что график функции y = f (x ), непрерывной на отрезке [a, b ], пересекает ось Ox хотя бы один раз, если значения f (a ) и f (b ) имеют противоположные знаки. Так, (рис. 1.16) f (a ) > 0, f (b ) < 0 и функция f (x ) обращается в 0 в точках x 1 , x 2 , x 3 .

Теорема 3 . Пусть функция f (x ) непрерывна на отрезке [a, b ], f (a ) = A , f (b ) = B и A ¹ B . (рис. 1.17). Тогда для любого числа C , заключенного между числами A и B , найдется такая внутренняя точка x 0 отрезка [a, b ], что f (x 0) = C .

Следствие . Если функция f (x ) непрерывна на отрезке [a, b ], m – наименьшее значение f (x ), M – наибольшее значение функции f (x ) на отрезке [a, b ], то функция принимает (хотя бы один раз) любое значение m , заключенное между m и M , а потому отрезок [m, M ] является множеством всех значений функции f (x ) на отрезке [a, b ].

Заметим, что если функция непрерывна на интервале (a, b ) или имеет на отрезке [a, b ] точки разрыва, то теоремы 1, 2, 3 для такой функции перестают быть верными.

В заключение рассмотрим теорему о существовании обратной функции.


Напомним, что под промежутком понимается отрезок либо интервал, либо полуинтервал конечный или бесконечный.

Теорема 4 . Пусть f (x ) непрерывна на промежутке X , возрастает (или убывает) на X и имеет множеством значений промежуток Y . Тогда для функции y = f (x ) существует обратная функция x = j (y ), определенная на промежутке Y , непрерывная и возрастающая (или убывающая) на Y с множеством значений X .

Замечание . Пусть функция x = j (y ) является обратной для функции f (x ). Так как обычно аргумент обозначают через x , а функцию через y , то запишем обратную функцию в виде y = j (x ).

Пример 1 . Функция y = x 2 (рис. 1.8, а) на множестве X = }

Похожие статьи

  • Карта сознания дэвида хокинса Результаты исследований Хокинса

    Дэвид Хокинс Путь просветления: 365 ежедневных размышлений Какое суждение лучше всего выражает жизнь, целиком посвященную духовному совершенствованию?Gloria in Excelsis Deo! «Слава в Вышних Богу!» КАЖДЫЙ ШАГ НА ПУТИ К ПРОСВЕТЛЕНИЮ не...

  • Грядет зачистка нелояльных блогеров

    В среду утром популярный сервис интернет-дневников "Живой журнал" вновь . Представители управляющей компании ресурса SUP отказались комментировать ситуацию, сказав только, что речь, возможно, идет о последствиях кибератак. В данный момент...

  • Американский проект по созданию атомной бомбы назывался

    75 лет назад немецкие ученые О. Ган и Ф. Штрассман сделали сенсационное открытие - расщепили ядро урана-235 с помощью нейтрона. Знаменитый Эрнест Резерфорд, названный «отцом» ядерной физики, не верил в возможность получения атомной...

  • Какие русские народные сказки бытовые

    1 - Про малютку-автобус, который боялся темноты Дональд Биссет Сказка о том, как мама-автобус научила своего малютку-автобуса не бояться темноты… Про малютку-автобус, который боялся темноты читать Жил-был на свете малютка-автобус. Он был...

  • Освобождение вены Рассекреченные списки бойцов 2 украинского фронта

    Образован на юго-западном направлении советско-германского фронта 20 октября 1943 г. на основании приказа Ставки ВГК № 30227 от 16.10.1943 г. путем переименования Степного фронта . В его состав были включены 4-я , 5-я и 7-я гвардейские,...

  • Черноморский флот российской федерации

    Posted By сайт on 15.08.2012 Черноморский флот – корабли черноморского флота Севастополя фотографии И не осмотреть с воды Черноморский флот России и Украины было бы не правильно. Хотя бы его небольшую часть. Да и плюс к этому — если вы...