Определенные и неопределенные интегралы сообщение. Интегралы для чайников: как решать, правила вычисления, объяснение. Основные свойства определенного интеграла

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Изучаем понятие « интеграл»

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.


Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


« Интеграл»

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.


В этой статье мы перечислим основные свойства определенного интеграла. Большинство этих свойств доказываются на основе понятий определенного интеграла Римана и Дарбу .

Вычисление определенного интеграла очень часто проводится с использованием первых пяти свойств, так что мы будем при надобности на них ссылаться. Остальные свойства определенного интеграла, в основном, применяются для оценки различных выражений.


Прежде чем перейти к основным свойствам определенного интеграла , условимся, что a не превосходит b .

    Для функции y = f(x) , определенной при x = a , справедливо равенство .

    То есть, значение определенного интеграла с совпадающими пределами интегрирования равно нулю. Это свойство является следствием определения интеграла Римана, так как в этом случае каждая интегральная сумма для любого разбиения промежутка и любого выбора точек равна нулю, так как , следовательно, пределом интегральных сумм является ноль.

    Для интегрируемой на отрезке функции выполняется .

    Другими словами, при перемене верхнего и нижнего пределов интегрирования местами значение определенного интеграла меняется на противоположное. Это свойство определенного интеграла также следует из понятия интеграла Римана, только нумерацию разбиения отрезка следует начинать с точки x = b .

    для интегрируемых на отрезке функций y = f(x) и y = g(x) .

    Доказательство.

    Запишем интегральную сумму функции для данного разбиения отрезка и данного выбора точек :

    где и - интегральные суммы функций y = f(x) и y = g(x) для данного разбиения отрезка соответственно.

    Переходя к пределу при получим , что по определению интеграла Римана равносильно утверждению доказываемого свойства.

    Постоянный множитель можно выносить за знак определенного интеграла. То есть, для интегрируемой на отрезке функции y = f(x) и произвольного числа k справедливо равенство .

    Доказательство этого свойства определенного интеграла абсолютно схоже с предыдущим:

    Пусть функция y = f(x) интегрируема на интервале X , причем и , тогда .

    Это свойство справедливо как для , так и для или .

    Доказательство можно провести, опираясь на предыдущие свойства определенного интеграла.

    Если функция интегрируема на отрезке , то она интегрируема и на любом внутреннем отрезке .

    Доказательство основано на свойстве сумм Дарбу: если к имеющемуся разбиению отрезка добавить новые точки, то нижняя сумма Дарбу не уменьшится, а верхняя – не увеличиться.

    Если функция y = f(x) интегрируема на отрезке и для любого значения аргумента , то .

    Это свойство доказывается через определение интеграла Римана: любая интегральная сумма для любого выбора точек разбиения отрезка и точек при будет неотрицательной (не положительной).

    Следствие.

    Для интегрируемых на отрезке функций y = f(x) и y = g(x) справедливы неравенства:

    Это утверждение означает, что допустимо интегрирование неравенств. Этим следствием мы будем пользоваться при доказательстве следующих свойств.

    Пусть функция y = f(x) интегрируема на отрезке , тогда справедливо неравенство .

    Доказательство.

    Очевидно, что . В предыдущем свойстве мы выяснили, что неравенство можно почленно интегрировать, поэтому, справедливо . Это двойное неравенство можно записать как .

    Пусть функции y = f(x) и y = g(x) интегрируемы на отрезке и для любого значения аргумента , тогда , где и .

    Доказательство проводится аналогично. Так как m и M – наименьшее и наибольшее значение функции y = f(x) на отрезке , то . Домножение двойного неравенства на неотрицательную функцию y = g(x) приводит нас к следующему двойному неравенству . Интегрируя его на отрезке , придем к доказываемому утверждению.

    Следствие.

    Если взять g(x) = 1 , то неравенство примет вид .

    Первая формула среднего значения.

    Пусть функция y = f(x) интегрируема на отрезке , и , тогда существует такое число , что .

    Следствие.

    Если функция y = f(x) непрерывна на отрезке , то найдется такое число , что .

    Первая формула среднего значения в обобщенной форме.

    Пусть функции y = f(x) и y = g(x) интегрируемы на отрезке , и , а g(x) > 0 для любого значения аргумента . Тогда существует такое число , что .

    Вторая формула среднего значения.

    Если на отрезке функция y = f(x) интегрируема, а y = g(x) монотонна, то существует такое число , что справедливо равенство .

Данные свойства используются для осуществления преобразований интеграла с целью его приведения к одному из элементарных интегралов и дальнейшему вычислению.

1. Производная неопределенного интеграла равна подынтегральной функции:

2. Дифференциал неопределенного интеграла равен подынтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

Причем a ≠ 0

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

Причем a ≠ 0 ˄ b ≠ 0

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной , который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

Сначала мы применили свойство 5, затем свойство 4, затем воспользовались таблицей первообразных и получили результат.

Алгоритм нашего онлайн калькулятора интегралов поддерживает все перечисленные выше свойства и без труда найдет подробное решение для вашего интеграла.

Данные свойства используются для осуществления преобразований интеграла с целью его приведения к одному из элементарных интегралов и дальнейшему вычислению.

1. Производная неопределенного интеграла равна подынтегральной функции:

2. Дифференциал неопределенного интеграла равен подынтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

Причем a ≠ 0

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

Причем a ≠ 0 ˄ b ≠ 0

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной , который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

Сначала мы применили свойство 5, затем свойство 4, затем воспользовались таблицей первообразных и получили результат.

Алгоритм нашего онлайн калькулятора интегралов поддерживает все перечисленные выше свойства и без труда найдет подробное решение для вашего интеграла.

В дифференциальном исчислении решается задача:под анной функции ƒ(х) найти ее производную (или дифференциал). Интегральное исчисление решает обратную задачу: найти функцию F(x), зная ее производную F " (x)=ƒ(х) (или дифференциал). Искомую функцию F(x) называют первообразной функции ƒ(х) .

Функция F(x) называетсяпервообразной функции ƒ(х) на интервале (а; b), если для любого х є (а;b) выполняется равенство

F " (x)=ƒ(x) (или dF(x)=ƒ(x)dx).

Например , первообразной функции у=х 2 , х є R, является функция, так как

Очевидно, что первообразными Будут также любые функции

где С - постоянная, поскольку

Tеоpeмa 29. 1. Если функция F(x) является первообразной функции ƒ(х) на (а;b), то множество всех первообразных для ƒ(х) задается формулой F(x)+С, где С - постоянное число.

▲ Функция F(x)+С является первообразной ƒ(х).

Действительно, (F(x)+C) " =F " (x)=ƒ(x).

Пусть Ф(х) - некоторая другая, отличная от F(x), первообразная функции ƒ(х) , т. е. Ф " (x)=ƒ(х). Тогда для любого х є (а;b) имеем

А это означает (см. следствие 25. 1), что

где С - постоянное число. Следовательно, Ф(х)=F(x)+С.▼

Множество всех пepвoобpaзныx функций F(x)+С для ƒ(х) называетсянеопределенным интегралом от функции ƒ(х) и обозначается символом∫ ƒ(х) dx.

Таким образом, по определению

∫ ƒ(x)dx= F(x)+C.

Здесь ƒ(х) называетсяподынтегральнoй функцией , ƒ(x)dx — подынтегральным выражением, х -переменной интегрирования , ∫ -знаком неопределенного интеграла .

Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Геометрически неопределенный интеграл представляет собой семейство «параллельных» кривых у=F(x)+C (каждому числовому значению С соответствует определенная кривая семейства) (см. рис. 166). График каждой первообразной (кривой) называетсяинтегральной кривой .

Для всякой ли функции существует неопределенный интеграл?

Имеет место теорема, утверждающая, что «всякая непрерывная на (а;b) функция имеет на этом промежутке первообразную», а следoвaтельно, и неопределенный интеграл.

Отметим ряд свойств неопределенного интеграла, вытекающих из его определения.

1. Дифференциал от неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции:

d(ƒ(x)dx)=ƒ(x)dх, (ƒ(x)dx) " =ƒ(х).

Дeйcтвительнo, d(∫ ƒ(х) dx)=d(F(x)+С)=dF(x)+d(C)=F " (x) dx =ƒ(х) dx

(ƒ (x) dx) " =(F(x)+C)"=F"(x)+0 =ƒ (x).

Блaгoдapя этому свойству правильность интегрирования проверяется дифференцированием. Например, равенство

∫(3x 2 + 4) dx=х з +4х+С

верно, так как (х 3 +4х+С)"=3x 2 +4.

2. Hеопpедeлeнный интеграл от диффepeнциaла некоторой функции равен сумме этой функции и произвольной постоянной:

∫dF(x)= F(x)+C.

Действительно,

3. Постоянный множитель можно выносить за знак интеграла:

α ≠ 0 - постоянная.

Действительно,

(положили С 1 /а=С.)

4. Неопределенный интеграл от aлгeбpaическoй суммы конечного числа непрерывных функций равен aлгебpaичecкoй сумме интегралов от слагаемых функций:

Пусть F"(x)=ƒ(х) и G"(x)=g(x). Тогда

где С 1 ±С 2 =С.

5. (Инвариантность формулы интегрирования).

Если, где u=φ(х) - произвольная функция, имеющая непрерывную производную.

▲ Пусть х - независимая переменная, ƒ(х) - непрерывная функция и F(x) - ее пepвoобpaзнaя. Тогда

Положим теперь u=ф(х), где ф(х) - непрерывно-дифференцируемая функция. Рассмотрим сложную функцию F(u)=F(φ(x)). В силу инвараинтности формы первого дифференциала функции (см. с. 160) имеем

Отсюда▼

Таким образом, формула для неопределенного интеграла остается справедливой независимо от того, является ли переменная интегрирования независимой переменной или любой функцией от нее, имеющей непрерывную производную.

Так, из формулыпутем замены х на u (u=φ(х))получаем

В частности,

Пример 29.1. Найти интеграл

где С=C1+С 2 +С 3 +С 4 .

Пример 29.2. Найти интеграл Решение:

  • 29.3. Таблица основных неопределенных интегралов

Пользуясь тем, что интегрирование есть действие, обратное дифференцированию, можно получить таблицу основных интегралов путем обращения соответствующих формул диффepeнциaльнoгo исчисления (таблица дифференциалов) и использования свойств неопределенного интеграла.

Например , так как

d(sin u)=cos u . du,

Вывод ряда формул таблицы будет дан при рассмотрении основных методов интегрирования.

Интегралы в приводимой ниже таблице называются табличными. Их следует знать наизусть. В интегральном исчислении нет простых и универсальных правил отыскания первообразных от элементарных функций, как в дифференциальном исчислении. Методы нахождения пepвoобpaзных (т. е. интегрирования функции) сводятся к указанию приемов, приводящих данный (искомый) интеграл к табличному. Следовательно, необходимо знать табличные интегралы и уметь их узнавать.

Отметим, что в таблице основных интегралов переменная интегрирования и может обозначать как независимую переменную, так и функцию от независимой переменной (coгласнo свойству инвариантности формулы интeгpиpoвания).

В справедливости приведенных ниже формул можно убедиться, взяв диффepeнциaл правой части, который будет равен подынтегральному выражению в левой части формулы.

Докажем, например, справедливость формулы 2. Функция 1/u определена и непрерывна для всех значений и, отличных от нуля.

Если u > 0, то ln|u|=lnu, тогда Поэтому

Eсли u<0, то ln|u|=ln(-u). Но Значит

Итак, формула 2 верна. Aнaлoгичнo, провepим формулу 15:

Таблица оснoвныx интегралов



Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Похожие статьи

  • Сбор необходимых документов

    2017 год – юбилейный для одного из старейших и уважаемых образовательных учреждений среднего профессионального образования нашего города – Дивногорского медицинского техникума (ДМТ). 50 лет назад, в 1967 году, техникум (тогда еще училище)...

  • Бально-рейтинговая система

    За столетия истории и культуры человечества карты эволюционировали из простейших игр типа дурака в игры, требующие составления индивидуальных колод и сложных многоходовых комбинаций. Собственно, именно о них и пойдет речь – о коллекционных...

  • Поток индукции магнитного поля

    > Изменение магнитного потока создает электрическое поле Рассмотрите возникновение электрического поля при изменении магнитного потока : закон электромагнитной индукции Фарадея, уравнение Максвелла, теорема Стокса. При перемене магнитного...

  • Применение теоремы Гаусса для расчета электрических полей Потенциал теорема гаусса

    Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности...

  • Карта сознания дэвида хокинса Результаты исследований Хокинса

    Дэвид Хокинс Путь просветления: 365 ежедневных размышлений Какое суждение лучше всего выражает жизнь, целиком посвященную духовному совершенствованию?Gloria in Excelsis Deo! «Слава в Вышних Богу!» КАЖДЫЙ ШАГ НА ПУТИ К ПРОСВЕТЛЕНИЮ не...

  • Грядет зачистка нелояльных блогеров

    В среду утром популярный сервис интернет-дневников "Живой журнал" вновь . Представители управляющей компании ресурса SUP отказались комментировать ситуацию, сказав только, что речь, возможно, идет о последствиях кибератак. В данный момент...