Положение элементов образующих металлы в периодической системе. Л.п.иванова, учитель химии новинской средней школы (астраханская обл.). Взаимодействие железа с кислородом

Как вам уже известно из курса химии 8 класса, большинство химических элементов относят к металлам (рис. 24 и 25).

В Периодической системе Д. И. Менделеева каждый период, кроме первого (он включает в себя два элемента-неметалла - водород и гелий), начинается с активного химического элемента-металла. Эти элементы образуют главную подгруппу I группы (IA группу) и называются щелочными металлами. Своё название они получили от названия соответствующих им гидроксидов, хорошо растворимых в воде, - щелочей.

Рис. 24.
Положение химических элементов-металлов в Периодической системе Д. И. Менделеева (короткопериодный вариант)

Атомы щелочных металлов содержат на внешнем энергетическом уровне только один электрон, который они легко отдают при химических взаимодействиях, поэтому являются сильнейшими восстановителями. Понятно, что в соответствии с увеличением радиуса атома восстановительные свойства щелочных металлов усиливаются от лития к францию.

Рис. 25.
Положение химических элементов-металлов в Периодической системе Д. И. Менделеева (длиннопериодный вариант)

Следующие за щелочными металлами элементы, составляющие главную подгруппу II группы (IIA группы), также являются типичными металлами, обладающими сильной восстановительной способностью (их атомы содержат на внешнем уровне два электрона). Из этих металлов кальций, стронций и барий называют щёлочноземельными металлами. Такое название эти металлы получили потому, что их оксиды, которые на Руси в старину называли «землями», при растворении в воде образуют щёлочи.

К металлам относят и химические элементы главной подгруппы III группы (IIIA группы), исключая бор.

Из элементов главных подгрупп следующих групп к металлам относят: в IVA группе - германий * , олово, свинец (первые два элемента - углерод и кремний - неметаллы), в VA группе - сурьму и висмут (первые три элемента - неметаллы), в VIA группе только последний элемент - полоний - явно выраженный металл. В главных подгруппах VIIA и VIIIA групп все элементы - типичные неметаллы.

Что касается элементов побочных подгрупп, то все они металлы.

Таким образом, условная граница между элементами-металлами и элементами-неметаллами проходит по диагонали В (бор) - Si (кремний) - As (мышьяк) - Те (теллур) - At (астат) (проследите её в таблице Д. И. Менделеева).

Атомы металлов имеют сравнительно большие размеры (радиусы), поэтому их внешние электроны значительно удалены от ядра и слабо с ним связаны. Вторая особенность, которая присуща атомам наиболее активных металлов, - это наличие на внешнем энергетическом уровне 1-3 электронов. Отсюда вытекает самое характерное химическое свойство всех металлов - их восстановительная способность, т. е. способность атомов легко отдавать внешние электроны, превращаясь в положительные ионы. Металлы - свободные атомы и простые вещества - не могут быть окислителями, т. е. атомы металлов не могут присоединять к себе электроны.

Следует, однако, иметь в виду, что деление химических элементов на металлы и неметаллы условно. Вспомните, например, свойства аллотропных модификаций олова: серое олово, или α-олово, - неметалл, а белое олово, или β-олово, - металл. Другой пример - модификации углерода: алмаз - неметалл, а графит имеет некоторые характерные свойства металла, например электропроводность. Хром, цинк и алюминий - типичные металлы, но образуют оксиды и гидроксиды амфотерного характера. И наоборот, теллур и иод - типичные неметаллы, но образованные ими простые вещества обладают некоторыми свойствами, присущими металлам.

Металлы составляют большую часть химических элементов. Каждый период периодической системы (кроме 1-го) химических элементов начинается с металлов, причем с увеличением номера периода их становится все больше. Если во 2-м периоде металлов всего 2 (литий и бериллий), в 3-м - 3 (натрий, магний, алюминий), то уже в 4-м - 13, а в 7-м - 29.

Атомы металлов имеют сходство в строении внешнего электронного слоя, который образован небольшим числом электронов (в основном не больше трех).

Это утверждение можно проиллюстрировать на примерах Na, алюминия А1 и цинка Zn. Составляя схемы строения атомов, по желанию можно составлять электронные формулы и приводить примеры строения элементов больших периодов, например цинка.

В связи с тем что электроны внешнего слоя атомов металлов слабо связаны с ядром, они могут быть «отданы» другим частицам, что и происходит при химических реакциях:

Свойство атомов металлов отдавать электроны явтяется их характерным химическим свойством и свидетельствует о том, что металлы проявляют восстановительные свойства.

При характеристике физических свойств металлов следует отметить их общие свойства: электрическую проводимость, теплопроводность, металлический блеск, пластичность, которые обусловлены единым видом химической связи - металлической, и металлической кристаллической решетки. Их особенностью является наличие свободноперемещаю-щихся обобществленных электронов между ион-атомами, находящимися в узлах кристаллической решетки.

При характеристике химических свойств важно подтвердить вывод о том, что во всех реакциях металлы проявляют свойства восстановителей, и проиллюстрировать это записью уравнений реакции. Особое внимание следует обратить на взаимодействие металлов с кислотами и растворами солей, при этом необходимо обратиться к ряду напряжений металлов (ряд стандартных электродных потенциалов).

Примеры взаимодействия металлов с простыми веществами (неметаллами):

С солями (Zn в ряду напряжений стоит левее Сu): Zn + СuС12 = ZnCl2 + Сu!

Таким образом, несмотря на большое многообразие металлов, все они обладают общими физическими и химическими свойствами, что объясняется сходством в строении атомов и строении простых веществ.

В периодической системе элементов Д.И.Менделеева металлы расположены в левом нижнем углу от диагонали B–At.

Класс металлов образован элементами s -семейства (кроме Н и Не), p -элементы главных подгрупп III (кроме В), IV (Ge, Sn, Pb), V (Sb, Bi) и VI (Po), все d - и f -элементы. Элементы, расположенные вблизи диагонали (Be, Al, Ti, Ge), обладают двойственным характером. Металлов в периодической системе элементов – большинство (Из 109 элементов только 22 неметаллы).

На наружном электронном уровне находятся 1,2 или 3 электрона, слабо связанных с ядром.

11 Na +11))) 20 Ca +20)))) 13 Al +13)))

2 8 1 2 8 8 2 2 8 3

1s 2 2s 2 2p 6 3s 1 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 1s 2 2s 2 2p 6 3s 3

В металлах связь металлическая и металлическая кристаллическая решётка чем объясняются физические свойства металлов.

Для главных подгрупп: чем левее и ниже металл, тем большую химическую активность он проявляет. В периодах металлические свойства убывают, а в группах усиливаются (с увеличением порядкового номера), так как изменяется радиус атома.

Для металлов характерны общие физические свойства :

1) твёрдость; 2) электро и теплопровдность; 3) непрозрачность; 4) металлический блеск;

5) ковкость или пластичность (объяснение – металлическая кристаллическая решётка).

Химические свойства : , n =1,2,3. (металлы всегда восстановители)

I. С простыми веществами :

1) с кислородом:

а) 2Ca + O 2 → 2CaO б) 2Mg + O 2 2MgO в) Au + O 2 ↛

в-ль ок-ль многие металлы покрыты тонкой плёнкой, которая препятствует дальнейшему окислению.

2) с галогенами:

а) 2Na + Cl 2 → 2NaCl б) 2Fe + 3Cl2 FeCl3

3) с серой : Fe + S → FeS

II. Со сложными веществами (ряд активности металлов) :

1) с водой:

а) (для щелочных и щелочноземельных металлов) 2Na + 2H 2 O → 2NaOH + H 2

б) металлы средней активности Mg + H 2 O MgO +H 2

в) правее водорода Au + H 2 O ↛

2) с растворами кислот , кроме HNO 3

а) Zn + 2HCl → ZnCl 2 + H 2 б) Cu + HCl ↛

3) с солями : Fe + CuSO 4 → FeSO 4 + Cu

Применение:

1) в быту – посуда, бытовые приборы; 2) в технике, в промышленности;

3) в самолёто- и ракетостроении; 4) в медицине и т.д.


Билет №9 (2)

Фенол, его строение, свойства, получение и применение.

Фенол – это производное бензола, в котором один атом водорода замещён на группу ОН.

Взаимное влияние бензольного кольца и ОН-групп:

1) Радикал С 6 Н 5 обладает свойством оттягивать на себя электроны атома кислорода ОН- группы, делая связь О–Н более полярной и атом водорода более подвижным.

2) ОН- группа придаёт большую подвижность атомам водорода в положениях 2,4,6 – бензольного кольца.

Этим взаимовлиянием и определяются свойства фенола.

Фенол – бесцветное, кристаллическое вещество с характерным запахом больницы.

Температура плавления 40,9℃ , хорошо растворим в горячей воде (карболовая кислота).

Фенол – ядовит!

Химические свойства :

1) В воде диссоциирует на ионы :

2) Проявляет слабые кислотные свойства, реагирует с металлами :

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2

фенолят натрия

3) Реагирует со щёлочью :

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O (отличие от спиртов)

4) Реакции замещения :

В промышленности фенол получают по схеме:


1) 2)

Фенол применяют для производства:

1) полимеров и пластмасс на их основе, красителей;

2) медикаментов;

3) взрывчатых веществ. Водородный раствор фенола используется как дезинфицирующее средство.


Билет №10 (1)

Разделы: Химия

Цели урока:

  • повторить с учащимися положение металлов в ПСХЭ, особенности строения их атомов и кристаллов (металлическую химическую связь и кристаллическую металлическую решетку).
  • обобщить и расширить сведения учащихся о физических свойствах металлов и их классификаций.

Оборудование и реактивы: Коллекции образцов металлов; образцы монет и медалей. Образцы сплавов. Периодическая система химических элементов Д.И. Менделеева.

Ход урока

В начале урока акцентируем внимание учащихся на значимости новой темы, определяемой той ролью, которую металлы играют в природе и во всех сферах деятельности человека.

Человек использовал металлы с древних времен.

I. В начале был век медный .

К концу каменного века человек открыл возможность использования металлов для изготовления орудий труда. Первым таким металлом был медь.

Период распространения медных орудий называют энеолитом или халколитом, что в переводе с греческого означает «медь». Медь обрабатывалась с помощью каменных орудий методом холодной ковки. Самородки меди превращались в изделия под тяжелыми ударами молота. В начале медного века из меди детали лишь мягкие орудия, украшения, предметы домашней утвари. Именно с открытием меди и других металлов стала зарождаться профессия кузнеца.

Позже появились листья, а потом человек стал добавлять к меди олово или сурьму, делать бронзу, более долговечную, прочную, легкоплавкую.

Бронза – сплав меди и олова. Хронологические границы бронзового века датируются в начале 3-го тысячелетия до н.э. до начала 1-го тысячелетия до н.э.

Третий и последний период первобытной эпохи характеризуется распространением железной металлургии и железных орудий и знаменует собой железный век. В современном значении этот термин был введен в употребление в середине IХ века датским археологом К. Ю. Томсоном и вскоре распространился в литературе наряду с терминами «каменный век» и « бронзовый век».

В отличие от других металлов железо, кроме метеоритного почти не встречается в чистом виде. Ученые предполагают, что первое железо, попавшее в руки человека, было метеоритного происхождения, и не зря железо именуется « небесным камнем». Самый крупный метеорит нашли в Африке, он весил около шестидесяти тонн. А во льдах Гренландии нашли железный метеорит весом тридцать три тонны. Современные химические

И настоящее время продолжается железный век. Ведь в настоящее время железные сплавы составляют почти 90 % всего металлов и металлических сплавов.

Затем учитель подчеркивает что исключительное значение метолов для развития общество обусловлено, конечно, их уникальными свойствами и просит учащихся назвать эти свойств.

Учащиеся называют также свойства металлов как электропроводность и теплопроводность, характерный металлический блеск, пластичность, твердость (кроме ртути) и др.

Учитель задает учащимся ключевой вопрос: а чем же обусловлены эти свойства?

I. Химические элементы – металлы.

  1. Особенности электронного строения атомов.
  2. Положение металлов в ПСХЭ в связи со строением атомов.
  3. Закономерности в изменении свойств элементов – металлов.
II. Простые вещества – металлы.
  1. Металлическая связь и металлическая кристаллическая решетка.
  2. Физические свойства металлов.
I. Химические элементы – металлы.

1. Металлы – это химические элементы атомы которых отдают электроны внешнего (а иногда предвнешнего) электронного слоя превращаясь в положительные ионы. Металлы – восстановители. Это обусловлено небольшим числом электронов внешнего слоя. большим радиусом атомов, вследствие что эти электроны слабо удерживаются с ядром.

2. Положение металлов в ПСХЭ в связи со строением атомов.

Учитель предлагает учащимся охарактеризовать положение элементов с рассмотренным строением атомов в ПСХЭ.

Учащиеся отвечают, что это будут элементы, размещенные в левом нижнем углу ПСХЭ.

Учитель подчеркивает, что в ПСХЭ будут все элементы. Расположенные ниже диагонали В - Аt, даже те у которых на внешнем слое 4 электрона (Jе, Sn, Рb), 5 электронов (Sd, Вi), 6 электронов (Ро), так как они отличаются большим радиусом.

В ходе беседы выясняется, что среди них есть S и р-элементы-металлы главных подгрупп, а также d и f металлы образующие побочные подгруппы.

Легко увидеть, что большинство элементов ПСХЭ – металлы.

3. Закономерности в изменении свойств элементов – металлов.

Учащиеся отвечают, что прочность связи валентных электронов с ядром зависит от двух факторов: величины заряда ядра и радиуса атома .

Показывают, что в периодах с увеличением заряда ядра восстановительные свойства уменьшаются, а в группах, наоборот, с возрастанием радиуса атома восстановительные свойства возрастают.

У элементов – металлов побочных подгрупп свойства чуть – чуть другие.

Учитель предлагает сравнить активность элементов – металлов падает. Эта закономерность наблюдается и у элементов второй побочной подгруппы Zn, Сd , Нg. Напоминаем схему электронного строения атомов.

1 2 3 4 5 6 7 номер электронного слоя.

У элементов побочных подгрупп – это элементы 4-7 периодов – с увеличением порядкового элемента радиус атомов изменяется мало, а величина зарядка ядра увеличивается значительно, поэтому прочность связи валентных электронов с ядром усиливается, восстановительные свойства ослабевают.

II. Простые вещества – металлы.

Учитель предлагает рассмотреть простые вещества – металлы.

Сначала обобщим сведения о типе химической связи, образуемой атомами металлов и строение кристаллической решетки (Приложение 1)

  • сравнительно небольшое количество электронов одновременно связывают множество ядер, связь делаколизована;
  • валентные электроны свободно перемещаются по всему куску металла, который в целом электронейтрален;
  • металлическая связь не обладает направляемостью и насыщенностью.

Учащиеся делают вывод, что в соответствие именно с таким строением металлы характеризуются общими физическими свойствами (демонстрация таблицы 5 «Классификация металлов по физическим свойствам»)

Сравнивая металлы по температурам правления можно демонстрировать плавление натрия и его блеск. (Приложение 2)

Учитель подчеркивает, что физические свойства металлов определяются именно их строением.

а) твердость – все металлы кроме ртути, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром – царапает стекло. (демонстрация)

б) плотность . Металлы делятся на мягкие (5г/см) и тяжелые (меньше 5г/см). (демонстрация)

в) плавкость . Металлы делятся на легкоплавкие и тугоплавкие. (демонстрация)

г) электропроводность, теплопроводность металлов обусловлена их строением. Хаотически движущиеся электроны под действием электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.

При повышении температуры амплитуда движения атомов и ионов, находящихся в узлах кристаллической решетки резко возрастает, и это мешает движению электронов, и электропроводность металлов падает.

Следует отметить, что у некоторых неметаллов, при повышении температуры электропроводность возрастает, например, у графита, при этом с повышением температуры разрушаются некоторые ковалентные связи, и число свободно перемещающихся электронов возрастает.

д) металлический блеск – электроны, заполняющие межатомное пространство отражают световые лучи, а не пропускают как стекло.Q

Поэтому все металлы в кристаллическом состоянии имеют металлический блеск. Для большинства металлов в ровной степени рассеиваются все лучи видимой части спектра, поэтому они имеют серебристо – белый цвет. Только золото и медь в большой степени поглощают короткие волны и отражают длинные волны светового спектра, поэтому имеют желтый свет. Самые блестящие металлы – ртуть, серебро, палладий. В порошке все металлы, кроме АI и Мg, теряют блеск и имеют черный или темно – серый цвет.

Механическое воздействие на кристалл с металлической решеткой вызывает только смещение слоев атомов и не сопровождается разрывом связи, и поэтому металл характеризуется высокой пластичностью.

Учитель: мы рассмотрели строение и физические свойства металлов, их положение в периодической системе химических элементов Д.И. Менделеева. Теперь для закрепления предлагаем тест.

1) Электронная формула кальция.

а) 1S 2 2S 2 2Р 6 3S 1

б) 1S 2 2S 2 2Р 6 3S 2

в) 1S 2 2S 2 2Р 6 3S 2 3S 6 4S 1

2) Электронную формулу 1S 2 2S 2 2Р 6 3S 2 3S 2 3Р 6 4S 2 имеет атом:

3) Электронная формула наиболее активного металла:

б) 1S 2 2S 2 2Р 6 3S 2

в) 1S 2 2S 2 2Р 6 3S 2 3Р 6 3d 10 4S 2

г) 1S 2 2S 2 2Р 6 3S 2 3Р 6 4S 2

4) Металлы при взаимодействии с неметаллами проявляют свойства

а) окислительные;

б) восстановительные;

в) и окислительные, и восстановительные;

г) не участвуют в окислительно-восстановительных реакциях;

5) В периодической системе типичные металлы расположены в:

а) верхней части;

б) нижней части;

в) правом верхнем углу;

г) левом нижнем углу;

Последний этап урока - подведение итогов. Каждому ученику выставляется оценка.

Домашнее задание: «Строение и физические свойства металлов».

Выучить материал по учебнику.

Положение металлов
в периодической системе химических элементов Д.И.Менделеева.
Физические свойства металлов

8 класс

Цель. Дать учащимся представление о свойствах металлов как химических элементов и как простых веществ, опираясь на их знания о природе химической связи. Рассмотреть применение простых веществ-металлов на основе их свойств. Совершенствовать умение сравнивать, обобщать, устанавливать взаимосвязь строения и свойств веществ. Развивать познавательную активность учеников, применяя игровые формы учебной деятельности.

Оборудование и реактивы. Карточки-задания, карточки с символами щелочных металлов (на каждого ученика), планшеты, таблица «Металлическая связь», игры «Алхимические знаки», спиртовка, старые медные монеты, батистовый мешочек, образцы металлов.

ХОД УРОКА

Учитель. Сегодня мы изучим металлы как химические элементы и металлы как простые вещества. Что называется химическим элементом?

Ученик. Химический элемент – это совокупность атомов с одинаковым зарядом ядра.

Учитель. Из 114 известных химических элементов 92 – металлы. Где в периодической системе химических элементов расположены металлы? Как расположены элементы-металлы в периодах?

Работа по таблице «Периодическая система химических элементов Д.И.Менделеева».

Ученик. Металлами начинается каждый период (кроме первого), и число их возрастает с увеличением номера периода.

Учитель. Сколько элементов-металлов в каждом периоде?

Статья подготовлена при поддержке школы английского языка в Москве «Аллада». Знание английского языка позволяет расширить свой кругозор, а также вы сможете познакомиться с новыми людьми и узнать много нового. Школа английского языка «Аллада» предоставляет уникальную возможность записать на курсы английского языка по оптимальной цене. Более подробную информацию о ценах и акциях действующих на данный момент вы сможете найти на сайте www.allada.org.

Ученик. В первом периоде металлов нет, во втором их два, в третьем – три, в четвертом – четырнадцать, в пятом – пятнадцать, в шестом – тридцать.

Учитель. В седьмом периоде свойствами металла должен обладать тридцать один элемент. Давайте посмотрим расположение металлов в группах.

Ученик. Металлы – это элементы, составляющие главные подгруппы I, II, III групп периодической системы (за исключением водорода и бора), элементы IV группы – германий, олово, свинец, V группы – сурьма, висмут, VI группы – полоний. В побочных подгруппах всех групп находятся только металлы.

Учитель. Элементы-металлы расположены в левой и нижней части периодической системы. А сейчас сделайте в тетрадях задание 1 из карточки-задания.

Задание 1. Выпишите из карточек химические знаки металлов. Назовите их. Подчеркните металлы главных подгрупп.

1-й в а р и а н т. Na, В, Сu, Be, Se, F, Sr, Cs.

О т в е т. Na натрий , Сu медь ,
Be бериллий , Sr стронций , Cs цезий.

2-й в а р и а н т. K, С, Fe, Mg, Ca, О, N, Rb.

О т в е т. K калий , Fe железо ,
Mg магний , Ca кальций , Rb рубидий .

Учитель. Каковы особенности строения атомов металлов? Составьте электронные формулы атомов натрия, магния, алюминия.

(У доски работают три ученика, используя рисунок (рис. 1).)

Сколько электронов на внешнем уровне этих элементов-металлов?

Ученик. Число электронов на внешнем уровне у элементов главных подгрупп равно номеру группы, у натрия на внешнем уровне один электрон, у магния – два электрона, у алюминия – три электрона.

Учитель. Атомы металлов имеют малое число электронов (в основном от 1 до 3) на внешнем уровне. Исключение составляют шесть металлов: атомы германия, олова и свинца на внешнем слое имеют 4 электрона, атомы сурьмы, висмута – 5, атомы полония – 6. А теперь сделайте второе задание из карточки.

Задание 2. Приведены схемы электронного строения атомов некоторых элементов.

Какие это элементы? Какие из них принадлежат к металлам? Почему?

1-й в а р и а н т. 1s 2 , 1s 2 2s 2 , 1s 2 2s 2 2p 6 3s 2 , 1s 2 2s 2 2p 3 .

О т в е т. Гелий, бериллий, магний, азот.

2-й вариант. 1s 2 2s 1 , 1s 2 2s 2 2p 6 3s 1 , 1s 1 , 1s 2 2s 2 2p 6 3s 2 3p l .

О т в е т. Литий, натрий, водород, алюминий.

Учитель. Как связаны свойства металлов с особенностями их электронного строения?

Ученик. Атомы металлов имеют меньший заряд ядра и больший радиус по сравнению с атомами неметаллов того же периода. Поэтому прочность связи внешних электронов с ядром в атомах металлов небольшая. Атомы металлов легко отдают валентные электроны и превращаются в положительно заряженные ионы.

Учитель. Как изменяются металлические свойства в пределах одного и того же периода, одной и той же группы (главной подгруппы)?

Ученик. В пределах периода с ростом заряда атомного ядра, а соответственно и с ростом числа внешних электронов металлические свойства химических элементов уменьшаются. В пределах одной и той же подгруппы с ростом заряда атомного ядра, при постоянном числе электронов на внешнем уровне металлические свойства химических элементов увеличиваются.

Задание у доски (работают три ученика).

Указать знаком «» ослабление металлических свойств в следующих пятерках элементов. Объяснить расстановку знаков.

1. Be 2. Mg 3. Al
Na Mg Al K Ca Sc Zn Ga Ge
Ca Sr In

Пока учащиеся работают индивидуально у доски, остальные выполняют задание 3 из карточки.

Задание 3. Какой из двух элементов обладает более выраженными металлическими свойствами? Почему?

1-й в а р и а н т. Литий или бериллий.

2-й в а р и а н т. Литий или калий.

Проверка заданий.

Учитель. Итак, металлическими свойствами обладают те элементы, атомы которых имеют мало электронов на внешнем уровне (далеком до завершения). Следствие небольшого числа внешних электронов – слабая связь этих электронов с остальной частью атома – ядром, окруженным внутренними слоями электронов.

Подводится итог и записывается кратко на доске (схема), ученики записывают в тетрадях.

Схема

Учитель. Что называется простым веществом?

Ученик. Простые вещества – это вещества, которые состоят из атомов одного элемента.

Учитель. Простые вещества-металлы – это «коллективы» атомов; в силу электронейтральности каждого атома вся масса металла тоже электронейтральна, что позволяет брать в руки металлы, рассматривать их.

Демонстрация образцов металлов: никель, золото, магний, натрий (в склянке под слоем керосина).

А вот натрий голыми руками брать нельзя – руки влажные, при взаимодействии с влагой образуется щелочь, а она разъедает кожу, ткани, бумагу и другие материалы. Так что последствия для руки могут быть печальными.

Задание 4. Определите металлы из числа выданных: свинец, алюминий, медь, цинк.

(Образцы металлов пронумерованы. Ответы записаны на обратной стороне доски.)

Проверка задания.

Учитель. В каком агрегатном состоянии при обычных условиях находятся металлы?

Ученик. Металлы – это твердые кристаллические вещества (кроме ртути).

Учитель. Что находится в узлах кристаллической решетки металлов и что между узлами?

Ученик. В узлах кристаллической решетки металлов находятся положительные ионы и атомы металлов, между узлами – электроны. Эти электроны становятся общими для всех атомов и ионов данного куска металла и могут свободно перемещаться по всей кристаллической решетке.

Учитель. Как называют электроны, которые находятся в кристаллической решетке металлов?

Ученик. Их называют свободными электронами или «электронным газом».

Учитель. Какой тип связи характерен для металлов?

Ученик. Это металлическая связь.

Учитель. Что называется металлической связью?

Ученик. Связь между всеми положительно заряженными ионами металлов и свободными электронами в кристаллической решетке металлов называется металлической связью.

Учитель. Металлическая связь обуславливает важнейшие физические свойства металлов. Металлы непрозрачны, обладают металлическим блеском, обусловленным способностью отражать падающие на их поверхность световые лучи. В наибольшей степени эта способность проявляется у серебра и индия.

Металлы имеют блеск в компактном куске, а в мелкодисперсном состоянии большинство из них черного цвета. Однако алюминий, магний сохраняют металлический блеск даже в порошкообразном состоянии (демонстрация алюминия и магния в порошке и в пластинках).

Все металлы – проводники теплоты и электрического тока. Хаотически движущиеся электроны в металле под воздействием приложенного электрического напряжения приобретают направленное движение, т.е. создают электрический ток.

Как вы думаете, изменяется ли электрическая проводимость металла при повышении температуры?

Ученик. С повышением температуры электропроводность снижается.

Учитель. Почему?

Ученик. При повышении температуры возрастает амплитуда колебаний атомов и ионов, находящихся в узлах кристаллической решетки металла. Это затрудняет перемещение электронов, и электрическая проводимость металла падает.

Учитель. Электропроводность металлов возрастает от Hg к Ag:

Hg, Pb, Fe, Zn, Al, Au, Cu, Ag.

Чаще всего с той же закономерностью, как и электрическая проводимость, изменяется теплопроводность металлов. Можете ли вы привести пример, доказывающий теплопроводность металлов?

Ученик. Если в алюминиевую кружку налить горячую воду, она нагреется. Это свидетельствует о том, что алюминий проводит теплоту.

Учитель. Чем обусловлена теплопроводность металлов?

Ученик. Она обусловлена большой подвижностью свободных электронов, которые сталкиваются с колеблющимися ионами и атомами, обмениваются с ними энергией. Поэтому происходит выравнивание температуры по всему куску металла.

Учитель. Весьма ценным свойством металлов является пластичность. На практике она проявляется в том, что под ударами молота металлы не дробятся на куски, а расплющиваются – они ковки. Почему металлы пластичны?

Ученик. Механическое воздействие на кристалл с металлической связью вызывает смещение слоев ионов и атомов относительно друг друга, а т.к. электроны перемещаются по всему кристаллу, разрыва связи не происходит, поэтому для металлов характерна пластичность (рис. 2, а).

Учитель. Ковкие металлы: щелочные металлы (литий, натрий, калий, рубидий, цезий), железо, золото, серебро, медь. Некоторые металлы – осмий, иридий, марганец, сурьма – хрупкие. Самым пластичным из драгоценных металлов является золото. Один грамм золота можно вытянуть в проволоку длиной в два километра.

А что происходит под действием удара с веществами с атомной или ионной кристаллической решеткой?

Ученик. Вещества с атомной или ионной решеткой под действием удара разрушаются. При механическом воздействии на твердое вещество с атомной решеткой смещаются отдельные ее слои – сцепление между ними нарушается из-за разрыва ковалентных связей. Разрыв связей в ионной решетке приводит к взаимному отталкиванию одноименно заряженных ионов (рис. 2, б, в).

Учитель. Электропроводность, теплопроводность, характерный металлический блеск, пластичность, или ковкость, – такая совокупность признаков присуща только металлам. Эти признаки проявляются в металлах и являются специфическими свойствами.

Специфические свойства находятся в обратной зависимости от прочности металлической связи. Остальные свойства – плотность, температуры кипения и плавления, твердость, агрегатное состояние – общие, присущие всем веществам признаки.

Плотность, твердость, температуры плавления и кипения металлов различны. Плотность металла тем меньше, чем меньше его относительная атомная масса и чем больше радиус атома. Наименьшая плотность у лития – 0,59 г/см 3 , наибольшая у осмия – 22,48 г/см 3 . Металлы, плотность которых ниже пяти, называют легкими, а металлы с плотностью больше пяти – тяжелыми.

Самый твердый металл – хром, самые мягкие – щелочные металлы.

Самую низкую температуру плавления имеет ртуть, t пл (Hg) = –39 °С, а самую высокую – вольфрам, t пл (W) = 3410 °С.

Такие свойства, как температура плавления, твердость, находятся в прямой зависимости от прочности металлической связи. Чем прочнее металлическая связь, тем жестче неспецифические свойства. Обратите внимание: у щелочных металлов прочность металлической связи уменьшается в периодической таблице сверху вниз и, как следствие, закономерно уменьшается температура плавления (растет радиус, влияние заряда ядра уменьшается, при больших радиусах и единственном валентном электроне щелочные металлы легкоплавки). Например, цезий можно расплавить теплом ладони. Но не стоит брать его голой рукой!

Игра «Кто быстрее»

На доске вывешиваются планшеты (рис. 3). На каждой парте набор карточек с химическими знаками щелочных металлов.

Задание. Опираясь на известные закономерности изменения температуры плавления щелочных металлов, разместить карточки в соответствии с данными планшетами.

О т в е т. a – Li, Na, K, Rb, Cs;
б – Cs, Rb, K, Na, Li; в – Cs, Li, Na, Rb, K.

Уточняются и обобщаются ответы учащихся.

Ученик (cообщение). Металлы различаются своим отношением к магнитным полям. По этому свойству их делят на три группы: ферромагнитные металлы – способные хорошо намагничиваться при действии слабых магнитных полей (например, железо, кобальт, никель и гадолиний); парамагнитные металлы – проявляющие слабую способность к намагничиванию (алюминий, хром, титан и большая часть лантаноидов); диамагнитные металлы – не притягивающиеся к магниту и даже слегка отталкивающиеся от него (например, висмут, олово, медь).

Обобщается изученный материал – учитель записывает на доске, учащиеся пишут в тетрадях.

Физические свойства металлов

Специфические:

металлический блеск,

электропроводность,

теплопроводность,

пластичность.

Обратно пропорциональная зависимость от прочности металлической связи.

Неспецифические: плотность,

t плавления,

t кипения,

твердость,

агрегатное состояние.

Прямо пропорциональная зависимость от прочности металлической связи.

Учитель. Физические свойства металлов, вытекающие из свойств металлической связи, обуславливают их разнообразное применение. Металлы и их сплавы – важнейшие конструкционные материалы современной техники; они идут на изготовление машин и станков, необходимых в промышленности, различных транспортных средств, строительных конструкций, сельскохозяйственных машин. В связи с этим сплавы железа, алюминия производят в больших количествах. Металлы широко применяются в электротехнике. Из каких металлов делают электрические провода?

Ученик. В электротехнике из-за дороговизны серебра в качестве материала для электропроводки используют медь и алюминий .

Учитель. Без этих металлов невозможно было бы передать электрическую энергию на расстояние в сотни, тысячи километров. Предметы быта также изготовлены из металлов. Почему кастрюли делают из металлов?

Ученик. Металлы теплопроводны и прочны.

Учитель. Какое свойство металлов используют для изготовления зеркал, рефлекторов, елочных игрушек?

Ученик. Металлический блеск.

Учитель. Легкие металлы – магний, алюминий, титан – широко используют в самолетостроении. Из титана и его сплавов изготавливают многие детали самолетов, ракет. Трение о воздух при больших скоростях вызывает сильное разогревание обшивки самолета, а прочность металлов при нагреве обычно значительно снижается. У титана и его сплавов в условиях сверхзвуковых полетов снижение прочности почти не наблюдается.

В тех случаях, когда необходим металл с большой плотностью (пули, дробь), часто используют свинец, хотя плотность свинца (11,34 г/см 3) значительно ниже, чем некоторых более тяжелых металлов. Но свинец довольно легкоплавок и поэтому удобен при обработке. К тому же он несравнимо дешевле осмия и многих других тяжелых металлов. Ртуть, как жидкий при обычных условиях металл, применяют в измерительных приборах; вольфрам – во всех случаях, когда требуется металл, противостоящий особенно высоким температурам, например для нитей накаливания электролампочек. Чем это обусловлено?

Ученик. У ртути – низкая температура плавления, а у вольфрама – высокая.

Учитель. Металлы также отражают радиоволны, что используется в радиотелескопах, улавливающих радиоизлучение искусственных спутников Земли, и в радиолокаторах, обнаруживающих самолеты на больших расстояниях.

Благородные металлы – серебро, золото, платина – используются для изготовления украшений. Потребителем золота является электронная отрасль промышленности: оно используется для изготовления электрических контактов (в частности, аппаратура пилотируемого космического корабля содержит достаточно много золота).

А теперь сделайте задание из карточки.

Задание 5. Подчеркнуть, какой из приведенных металлов самый:

1) широко используемый: золото, серебро, железо;

2) ковкий: литий, калий, золото;

3) тугоплавкий: вольфрам, магний, цинк;

4) тяжелый: рубидий, осмий, цезий;

5) электропроводный: никель, свинец, серебро;

6) твердый: хром, марганец, медь;

7) легкоплавкий: платина, ртуть, литий;

8) легкий: калий, франций, литий;

9) блестящий: калий, золото, серебро.

Демонстрация опыта

Для опыта берется 5–10 штук медных (старых) монет, которые подвешивают в батистовом мешочке над пламенем спиртовки. Ткань не загорается. Почему?

Ученик. Медь хороший проводник тепла, тепло сразу передается металлу, и ткань не успевает загореться.

Учитель. Металлы известны человеку давно.

Ученик (сообщение). Еще в глубокой древности человеку были известны семь металлов. Семь металлов древности соотносили с семью известными тогда планетами и обозначали символическими значками планет. Знаки золота (Солнца) и серебра (Луны) понятны без особых пояснений. Знаки же других металлов считались атрибутами мифологических божеств: ручное зеркало Венеры (медь), щит и копье Марса (железо), трон Юпитера (олово), коса Сатурна (свинец), жезл Меркурия (ртуть).

Взгляды алхимиков о связи планет с металлами очень удачно выражают следующие строки стихотворения Н.А.Морозова «Из записок алхимика»:

«Семь металлов создал свет,
По числу семи планет.
Дал нам космос на добро
Медь, железо, серебро,
Злато, олово, свинец.
Сын мой, сера – их отец.
И спеши, мой сын, узнать:
Всем им ртуть – родная мать».

Эти представления были настолько прочными, что, когда для открытых в средние века сурьмы
и висмута не нашлось планет, их просто не посчитали металлами.

Держа свои опыты в тайне, алхимики всевозможными способами зашифровывали описания полученных веществ.

Учитель. И вы, используя алхимические обозначения, дома составили игру «Алхимические знаки».

Условие игры: на рисунке (рис. 4) приведены древние алхимические знаки металлов. Определите, какой планете принадлежит каждый символ и, взяв из названия по одной букве, той, что указаны на рисунке, прочтите название элемента-металла.

О т в е т ы. Самарий, рутений, платина.

Учащиеся обмениваются играми, отгадывают названия металлов.

Учитель. М.В.Ломоносов так говорил о металлах: «Металлом называется твердое, непрозрачное и светлое тело, которое на огне плавить и холодное ковать можно» и относил это свойство к металлам: золоту, серебру, меди, олову, железу и свинцу.

В 1789 г. французский химик А.Л.Лавуазье в своем руководстве по химии дал список простых веществ, в который включил все известные тогда 17 металлов (Sb, Ag, As, Bi, Co, Cu, Sn, Fe, Mn, Hg, Mo, Ni, Au, Pt, Pb, W, Zn). По мере развития методов химического исследования число известных металлов стало быстро возрастать. В первой половине XIX в. были открыты платиновые металлы; получены путем электролиза некоторые щелочные и щелочно-земельные металлы; положено начало разделению редкоземельных металлов; при химическом анализе минералов открыты неизвестные ранее металлы. В начале 1860 г. с помощью спектрального анализа были открыты рубидий, цезий, индий, таллий. Блестяще подтвердилось существование металлов, предсказанных Менделеевым на основе его периодического закона (галлия, скандия и германия). Открытие радиоактивности в конце XIX в. повлекло за собой поиски радиоактивных металлов, увенчавшиеся полным успехом. Наконец, методом ядерных превращений, начиная с середины XX в. были получены не существующие в природе радиоактивные металлы, в том числе и те, что принадлежат к трансурановым элементам. В истории материальной культуры, древней и новой, металлы имеют первостепенное значение.

Учитель подводит итог урока.

Домашнее задание

1. Найдите ответы на вопросы.

Чем отличается строение атомов металлов от строения атомов неметаллов?

Назовите два металла, легко расстающихся с электронами по «просьбе» световых лучей.

Можно ли принести в кабинет химии из соседнего кабинета ведро ртути?

Почему некоторые металлы пластичные (например, медь), а другие – хрупкие (например, сурьма)?

В чем причина присутствия у металлов специфических свойств?

Где можно встретить в быту:

а) вольфрам, б) ртуть, в) медь, г) серебро?

На каких физических свойствах данного металла основано применение его в быту?

Какой металл академик А.Е.Ферсман назвал «металлом консервной банки»?

2. Посмотрите на рисунок и объясните, почему металлы использованы именно таким образом, а не наоборот.

3. Решите головоломки.

Головоломка «Пять + два».

Впишите в горизонтальные ряды названия следующих химических элементов, оканчивающихся на -ий:

а) щелочной металл;

б) благородный газ;

в) щелочно-земельный металл;

г) элемент семейства платины;

д) лантаноид.

Если названия элементов будут вписаны правильно, то по диагоналям: сверху вниз и снизу вверх можно будет прочесть названия еще двух элементов.

О т в е т ы. а – Цезий, б – гелий, в – барий, г – родий, д – тулий.
По диагонали: церий, торий.

Головоломка «Класс».

Впишите названия пяти химических элементов, состоящие из семи букв каждое, таким образом, чтобы ключевое слово было КЛАСС.

О т в е т ы. Кальций (кобальт), лютеций,
актиний, скандий, серебро (самарий).

Головоломка «Семь букв».

Впишите названия химических элементов в вертикальные ряды.

Ключевое слово – КИСЛОТА.

О т в е т ы. Калий, индий, селен, литий,
осмий, тулий, аргон (астат).

Похожие статьи