Хим процессы. Химические процессы. По тепловому эффекту реакции

О значительнейших вещах не будем судить слишком быстро.

Гераклит

Химический процесс (от лат. processus - продвижение) представляет собой последовательную смену состояний вещества, тесную связь следующих друг за другом стадий развития, представляющую непрерывное, единое движение. Учение о химических процессах - это область науки, в которой существует наиболее глубокое взаимопроникновение физики, химии и биологии. Химические процессы подразделяются на: гомо- и гетерогенные (в зависимости от агрегатного состояния реагирующих систем), экзо- и эндотермические (в зависимости от количества выделяющейся и поглощаемой теплоты), окислительные, восстановительные (в зависимости от отношения к кислороду) и др.

Все процессы, которые протекают вокруг нас, можно объединить в три большие группы.

1. Самопроизвольные процессы, которые можно использо
вать для получения энергии или совершения работы. Условиями
протекания самопроизвольных процессов или законами термо
динамики, характеризуемыми их, являются: а) в изолированной
системе, т. е. в системе, для которой исключен любой материаль
ный или энергетический обмен с окружающей средой, сумма
всех видов энергии есть величина постоянная; б) изменение
энтальпии (тепловой эффект процесса, АН) зависит только от
вида и состояния исходных веществ и продуктов и не зависит
от пути перехода. Он носит название закона Гесса и сформули
рован им в 1840 г.

2. Процессы, для осуществления которых требуется затрата
энергии или совершение работы.

3. Самоорганизация химической системы, т. е. самопроиз
вольный процесс, проходящий без изменения энергетического
запаса системы, совершается только в направлении, при котором


порядок в системе увеличивается, т. е. где энтропия уменьшается.

Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций. Процесс превращения одних веществ в другие называется химической реакцией. К условиям протекания химических процессов относятся прежде всего термодинамические факторы, характеризующие зависимость реакций от температуры, давления и некоторых других условий. На скорость химической реакции также влияют следующие условия и параметры:

1) природа реагирующих веществ (например, щелочные металлы растворяются в воде с образованием щелочей и выделением водорода и реакция протекает при обычных условиях моментально, а цинк, железо и другие реагируют медленно и с образованием оксидов, а благородные металлы не реагируют вообще);

2) температура. При повышении температуры на каждые 10 °С скорость реакции увеличивается в 2-4 раза (правило Вант-Гоффа). Со многими веществами кислород начинает реагировать с заметной скоростью уже при обыкновенной температуре (медленное окисление). При повышении температуры начинается бурная реакция (горение);

3) концентрация. Для веществ в растворенном состоянии и газов скорость химических реакций зависит от концентрации реагирующих веществ. Горение веществ в чистом кислороде происходит интенсивнее, чем в воздухе, где концентрация кислорода почти в 5 раз меньше. Здесь справедлив закон действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ;

4) площадь поверхности реагирования. Для веществ в твердом состоянии скорость прямо пропорциональна поверхности реагирующих веществ. Железо и сера в твердом состоянии реагируют достаточно быстро лишь при предварительном измельчении и перемешивании: горение хвороста и полена;


5) катализатор. Скорость реакции зависит от катализаторов, веществ которые ускоряют химические реакции, но сами при этом не расходуются. Разложение бертолетовой соли и пероксида водорода ускоряется в присутствии оксида марганца (IV) и др.

Для вступления в химическую реакцию необходимо преодолеть некоторый энергетический барьер, соответствующий энергии активации, возможность накопления которой сильно зависит от температуры. Многие реакции долгое время не могут закончиться. В таком случае говорят, что реакция достигла химического равновесия. Химическая система находится в состоянии равновесия, если выполняются следующие три условия:

1) в системе не происходит энергетических изменений ( Н = 0);

2) не происходит изменений степени беспорядка (, S = 0);

3) не изменяется изобарный потенциал ( J = 0).

Вант-Тофф, используя термодинамический подход, классифицировал химические реакции, а также сформулировал основные положения химической кинетики. Химическая кинетика изучает скорости протекания химических реакций. Ле Шателье сформулировал закон смещения химического равновесия в химических реакциях под влиянием внешних факторов - температуры, давления и др. Согласно принципу Ле Шателье, если на систему, находящуюся в состоянии химического равновесия, оказывается внешнее воздействие (изменяется температура, давление или концентрация), то положение равновесия химической реакции смещается в ту сторону, которая ослабляет данное воздействие.

Химические реакции классифицируют по изменению качества исходных веществ и продуктов реакции на следующие виды:

реакции соединения - реакции, при которых из нескольких веществ образуется одно вещество, более сложное, чем исходные;

реакции разложения - реакции, при которых из одного сложного вещества образуется несколько веществ;

реакции замещения - реакции, при которых атомы одного элемента замещают атом другого элемента в сложном веществе и при этом образуются два новых - простое и сложное;

реакции обмена - реакции, при которых реагирующие вещества обмениваются своими составными частями, в результате


чего из двух сложных веществ образуются два новых сложных вещества.

По тепловому эффекту химические реакции можно подразделить на экзотермические - с выделением теплоты и эндотермические - с поглощением теплоты. С учетом явления катализа реакции могут быть каталитические - с применением катализаторов и некаталитические - без применения катализаторов. По признаку обратимости реакции делят на обратимые и необратимые.

В. Оствальд, исследуя условия химического равновесия, пришел к открытию явления катализа. Оказалось, что в большой степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий. Явление катализа - селективного ускорения химических процессов в присутствии веществ (катализаторов), которые принимают участие в промежуточных процессах, но регенерируются в конце реакции, широко используется в промышленности, например фиксация азота и водорода, контактный способ производства серной кислоты и многие другие. Впервые синтез аммиака был осуществлен в 1918 г. на основе работ Габера, К. Боша и А. Митташа с помощью катализатора, представляющего собой металлическое железо с добавками окисей калия и алюминия, при температуре 450-550 °Си давлении 300-1000 атмосфер. В настоящее время большое внимание уделяют применению металлоорганических и металлокомплексных катализаторов, отличающихся высокими селективностью и избирательностью действия. Тот же самый процесс синтеза аммиака при использовании металлоорганического катализатора удалось осуществить при обычной температуре (18 °С) и нормальном атмосферном давлении, что открывает большие перспективы в производстве минеральных азотных удобрений. Особенно велика роль катализа в органическом синтезе. Крупнейшим успехом в этом направлении надо признать получение искусственного синтетического каучука из этилового спирта, осуществленное советским академиком С. В. Лебедевым в 20-х годах XX века.


Ферменты, или биокатализаторы, играют исключительную роль в биологических процессах и технологии веществ растительного и животного происхождения, а также в медицине. В настоящее время известно свыше 750 ферментов, и их число ежегодно увеличивается. Ферменты являются бифункциональными и полифункциональными катализаторами, так как здесь имеет место согласованное воздействие двух или нескольких групп катализаторов различной природы в составе активного центра фермента на поляризацию определенных связей субстрата. Эта же концепция лежит в основе каталитического действия фермента и теории кинетики действия ферментов. Главное отличие ферментов от других катализаторов заключается в исключительно высокой активности и ярко выраженной специфичности.

Самоорганизация химических систем в биологические, их единство и взаимосвязь подтверждает синтез органических соединений из неорганических. В 1824 г. немецкий химик Ф. Велер, ученик Берцелиуса, впервые получил из неорганического дициана N-C-C-N при нагревании его с водой щавелевую кислоту НООС-СООН - органическое соединение. Также было получено новое органическое вещество - мочевина (карбамид) из цианистого аммония. В 1854 г. во Франции М. Бертло синтетическим путем получил жир. Наибольшим успехом химии 50-60-х гг. XX в. явился первый синтез простых белков - гормона инсулина и фермента рибонуклерозы.

Химическая реакция - это превращение одного или нескольких исходных веществ в отличающиеся от них по химическому составу или строению вещества. Исходные вещества, всупающие в химическую реакцию, называютсяреагентами . Вещества, образующиеся при взаимодействии реагентов называютсяпродуктами реакции . В отличие от ядерных реакций, при химических реакциях не изменяется ни общее число атомов в реагирующей системе, ни изотопный состав химических элементов. Это связано с тем, что химические процессы не затрагивают ядер атомов, входящих в состав молекул реагентов. Эти процессы осуществляются за счет взаимодействия валентных электронов и сопровождаются изменением строения внешних электронных оболочек атомов реагентов.

По числу и составу исходных веществ и продуктов реакции выделяют четыре основных типа химических реакций:

c оединения из нескольких простых или сложных веществ образуется одно сложное: 2Cu + O 2 = 2CuO;

разложения – из сложного вещества образуется несколько простых или сложных веществ: 2H 2 O = 2H g + O 2 ;

замещения –атом простого вещества замещает один из атомов сложного:

Fe+CuSO 4 =FeSO 4 +Cu;

обмен а сложные вещества обмениваются своими составными частями:

NaCl+H 2 SO 4 = НСl+NaHSO 4 .

По изменению степени окисления атомов выделяют:

 реакции без изменения степени окисления (например, реакции ионного обмена) :

NaOH+HCl=NaCl+H 2 O;

 реакции с изменением степени окисления (окислительно-восстановительные реакции ): H 2 + Cl 2 = 2HCl.

По тепловому эффекту выделяют реакции:

экзотермические – реакции, протекающие с выделением энергии:

4Al + 3O 2 = 2Al 2 O 3 + Q;

эндотермические – реакции, сопровождающиеся поглощением энергии:

СаСО 3 = СаО + СО 2 – Q.

По необходимости присутствия других веществ выделяют реакции:

каталитические – идущие только с участием катализаторов:SO 2 + O 2 SO 3 ;

некаталитические – идущие без участия катализаторов:2NO + O 2 = 2NO 2 .

По обратимости выделяют реакции:

необратимые – протекающие до полного превращения исходных веществ в продукты, при необратимой реакции в растворе образуется малодиссоциирующее вещество – осадок, газ, вода:BaCl 2 +H 2 SO 4 =BaSO 4 ↓ + 2HCl;

обратимые – протекающие как в сторону получения продуктов реакции, так и в сторону получения исходных веществ:N 2 + 3H 2 ↔2CO 2 .

Способность к взаимодействию различных химических реагентов определяется не только их атомарно-молекулярной структурой, но и условиями протекания химических реакций. К ним относятся термодинамические факторы (температура, давление и др.) и кинетические (все, что связано с переносом веществ, образованием их промежуточных форм). Их влияние на химические реакции вскрывается на концептуальном уровне химии, который обобщенно называют учением о химических процессах .

Учение о химических процессах является областью глубокого взаимопроникновения физики, химии и биологии. Действительно, в основе этого учения лежатхимическая термодинамика икинетика , которые в равной степени относятся и к химии, и к физике. А живая клетка, исследуемая биологической наукой, представляет собой в то же время микроскопический химический реактор, в котором происходят превращения, многие из которых химия изучает и пытается реализовать в макроскопическом масштабе. Таким образом, человек вскрывает глубокую связь, существующую между физическими, химическими и биологическими явлениями, и одновременно перенимает у живой природы опыт, необходимый ему для получения новых веществ и материалов.

Большинство современных химических технологий реализуется с использованием катализаторов – веществ, которые увеличивают скорость реакции, не расходуясь в ней.

В современной химии также получило развитие направление, принципом которого является энергетическая активация реагента (то есть подача энергии извне) до состояния полного разрыва исходных связей. В данном случае речь идет о больших энергиях. Это так называемаяхимия экстремальных состояний , использующая высокие температуры, большие давления, излучение с большой величиной энергии кванта (ультрафиолетовое, рентгеновское, гамма-излучение). К этой области относятсяплазмохимия (химия на основе плазменного состояния реагентов), а также технологии, в которых активация процесса достигается за счет направленных электронных или ионных пучков(элионные технологии).

Химия экстремальных состояний позволяет получать вещества и материалы, уникальные по своим свойствам: композитные материалы, высокотемпературные сплавы и металлические порошки, нитриды, силициды и карбиды тугоплавких металлов, разнообразные по своим свойствам покрытия.

При решении разнообразных термодинамических задач используют особые функции – термодинамические потенциалы. Зная выражение термодинамических потенциалов, через независимые параметры системы можно вычислить и другие характеристики процессов. Приведем некоторые из них.

Подставив в выражение для первого начала термодинамики dQ = dU + dA формулы для работыdA = pdV и количества теплоты в обратимом процессеdQ = TdS , получимdU = TdS pdV (1).

Это выражение, объединяющее первое и второе начала термодинамики, является полнымдифференциалом внутренней энергии, а общее уравнение для полного дифференциала таково:

Сопоставив его с выражением (1), получим:

Итак, частная производная от внутренней энергии по энтропии равна температуре, взятая с обратным знаком производная по объему равна давлению, а сама внутренняя энергия является термодинамическим потенциалом. Другой термодинамический потенциал ввел Г. Гельмгольц (1877). Он показал, что функция F = U TS , называемая свободной энергией, может быть критерием термодинамического равновесия.

Найдем полный дифференциал свободной энергии: dF = dU TdS SdT , тогда, используя выражение (1), можно записать:dF = TdS pdV TdS SdT = – SdT pdV . Учитывая (как и ранее), чтоdF является полным дифференциалом от переменныхT иV , получаем:

.

Физический смысл свободной энергии F ясен из выражения дляdF . ПриT = constdT = 0, тогдаdF = – pdV = – dA , то есть уменьшение свободной энергии равно работе, совершаемой системой в изотермическом процессе. Сохранение постоянной температуры тела у живых организмов позволяет считать, что производимая ими работа совершается за счет уменьшения свободной энергии.

Важным для химических процессов является и термодинамический потенциал, так называемая функция Гиббса (G ): G = F + pV = U TS + pV . Продифференцировав, получим:dG = dU TdS SdT + pdV + VdP . С учетом уравнения (1) последнее уравнение можно переписать так:dG = TdS pdV TdS SdT + pdV + Vdp = – SdT + Vdp . Сравнивая полученное уравнение с выражением для полного дифференциала, запишем:

.

Потенциал Гиббса используют при расчетах энтропии и объема в изобарно-изотермических процессах. При стремлении системы к равновесию в необратимом изобарно-изотермическом процессе dQ TdS , и для дифференциала Гиббса используют уже вместо написанного выше равенства следующее: dG –SdT + VdP . Но поскольку в этом процессеdT = 0,dp = 0, то иdG 0. И это будет выполняться до установления равновесного состояния, когда иdG станет равно нулю. Можно сказать, что в неравновесных изобарно-изотермических процессах функция Гиббса убывает до минимума в состоянии равновесия. В изотермических процессах, происходящих без изменения объема, убывает также потенциал Гельмгольца – свободная энергия.

При изменении числа частиц в системе вводят так называемый химический потенциал (). Тогда вместо уравнения (1) следует писать: dU = TdS pdV + dN . ЗдесьdN изменение числа частиц в системе. Соответственно изменятся и выражения для других потенциалов:dF = – SdT pdV + dN ,dG = – SdT + Vdp + dN . Тогда для химического потенциала при постоянных парах соответствующих параметров (S ,V ), (T ,V ), (T ,p ) можно записать:

.

Итак, термодинамический потенциал равен изменению потенциала, приходящегося на одну частицу в соответствующем процессе. И реакция возможна, если она сопровождается уменьшением величины потенциала. Когда камень падает в поле тяготения, уменьшается его потенциальная энергия. Подобный процесс наблюдается и в химической реакции: когда она идет, ее свободная энергия переходит на более низкий уровень. В этих примерах аналогия полная, поскольку нет изменения энтропии. Но в химических реакциях изменение энтропии необходимо учитывать, и возможность реакции еще не означает, что она пойдет самопроизвольно. Термодинамика объясняет: реакция пойдет только при уменьшении энергии веществ и увеличении энтропии. Энтропия растет, так как в малой молекуле расположение атомов менее упорядочено, чем в большой.

Но реальные процессы и состояния чаще всего являются неравновесными, а системы –открытыми. Такие процессы рассматриваются внеравновесной термодинамике.

Химические процессы лежат в основе химической технологии, которая представляет собой науку о наиболее экономичных методах и средствах массовой химической переработки природного и сельскохозяйственного сырья в продукты потребления и продукты, применяемые в других отраслях материального производства.

Все, что связано с расходованием материальных ресурсов в народном хозяйстве, на три четверти зависит от использования химических знаний и применения химической технологии, «химических навыков». Более гого, современная химическая технология, используя достижения других естественных наук - прикладной механики, материаловедения и кибернетики, изучает и разрабатывает совокупность физических и химических процессов, машин и аппаратов, оптимальные пути осуществления данных процессов и управления ими во многих отраслях промышленно1 о производства различных веществ, продуктов, материалов и изделий. Химическая технология является научной основой нефтехимической, коксохимической, целлю-лозно-бумаяшой, пищевой, микробиологической промышленности, промышленности строительных материалов, черной и цветной металлургии и других отраслей.

В последние десятилетия химико-технологические процессы используются практически во всех отраслях промышленного производства.

Химико-технологический процесс (XTII) можно разделить на три взаимосвязанные стадии:

Подвод реагирующих веществ в зону реакции;

Собственно химические реакции;

Отвод полученных продуктов из зоны реакции.

Подвод реагирующих веществ может осуществляться абсорбцией, адсорбцией или десорбцией газов, конденсацией паров, плавлением твердых компонентов или растворением их в жидкости, испарением жидкостей или возгонкой твердых веществ (см. подпара1рафы 4.2.3, 4.2.4).


Химические реакции как второй этап ХТП обычно протекают в несколько последовательных или параллельных стадий, приводящих к получению основного продукта, а также ряда побочных продуктов (отходов), образующихся при взаимодействии примесей с основными исходными веществами. При анализе же производственных процессов часто учитывают не все реакции, а лишь те из них, которые имеют определяющее влияние на качество и количество получаемых целевых продуктов.

Отвод полученных продуктов из зоны реакции может совершаться аналогично подводу, в том числе посредством диффузии, конвекции и перехода вещества из одной фазы (газовой, твердой, жидкой) в другую. При этом общая скорость технологического процесса определяется скоростью одного из трех составляющих элементарных процессов, протекающего медленнее других.

Различают следующие разновидности химико-технологических процессов:

Гомогенные и гетерогенные (могут быть экзотермическими и эндотермическими, обратимыми и необратимыми);

Электрохимические;

Каталитические.

Гомогенными процессами называют такие, в которых все реагирующие вещества находятся в одной какой-нибудь фазе: газовой (г), твердой (т), жидкой (ж). В этих процессах реакция обычно протекает быстрее, чем в гетерогенных. В целом механизм всего технологического процесса в гомогенных системах проще, как и управление процессом. По этой причине на практике часто стремятся к проведению именно гомогенных процессов, т.е. переводят реагирующие компоненты в какую-либо одну фазу.

В гетерогенных процессах участвуют вещества, находящиеся в разных состояниях (фазах), т.е. в двух или трех фазах. Примерами двухфазовых систем могут быть: г - (несмешивающиеся); г - т;ж - т;т - т (разновидные). В производственной практике чаще всего встречаются системы г - ж, г - т, ж - т. Нередко процессы протекают в сложных гетерогенных системах (г - ж - т, г - т - т, ж - т - т).

К гетерогенным процессам относятся горение (окисление) твердых веществ и жидкостей, растворение металлов в кислотах и щелочах и др.

Все химические процессы протекают либо с выделением, либо с поглощением теплоты: первые называются экзотермическими, вторые - эндотермическими. Количество выделяе-


мой или поглощаемой при этом теплоты называют тепловым эффектом процесса (теплоты процесса).

Теоретически все химические реакции, осуществляемые в ХТП, обратимы. В зависимости от условий они могут протекать как в прямом, так и в обратном направлениях. Во многих случаях равновесие в реакциях полностью смещается в сторону продуктов реакции, а обратная реакция, как правило, не протекает. По этой причине технологические процессы делятся на обратимые и необратимые. Последние протекают лишь в одном направлении.

Электрохимические процессы относятся к такой науке, как электрохимия, которая рассматривает и изучает процессы превращения химической энергии в электрическую и наоборот. Поскольку электрический ток - это перемещение электрических зарядов, в частности электронов, то основное внимание электрохимия сосредотачивает на реакциях, в которых электроны переходят от одного вещества к другому. Такие реакции в химии называются окислительно-восстановительными.

Примерами осуществления перехода химической энергии в электрическую могут служить гальванические элементы, предназначенные для однократного электрического разряда: непрерывного или прерывистого. После разряда они теряют работоспособность. Разновидностью гальванических элементов являются аккумуляторные батареи, например, свинцовый аккумулятор. В отличие от гальванических элементов, работоспособность аккумулятора после разряда можно восстановить путем пропускания через него постоянного тока от внешнего источника.

Процессы перехода электрической энергии в химическую называются электролизом. Согласно ионной теории электролиза, прохождение постоянного электрического тока через электролит осуществляется с помощью ионов. На электродах, подводящих электроток, происходит перенос электронов к ионам либо от них. При этом в электрическом поле положительно заряженные ионы (катионы) движутся к катоду, отрицательно заряженные (анионы) - к аноду. На катоде происходит восстановление, на аноде - окисление ионов или молекул, входящих в состав электрона.

Электролиз нашел широкое применение в следующих основных промышленных процессах: извлечение металлов (алюминия, цинка, частично меди); очистка (рафинирование) металлов (меди, цинка и др.); нанесение гальванических покрытий; анодирование (оксидирование) поверхностей.

Нанесение гальванических покрытий (электроосаждение) осуществляется на катоде. Катод в этом случае погружается в


электролит, содержащий ионы электроосаждаемого металла. В качестве же анода используется электрод из того металла, которым наносят покрытие.

Метод электроосаждения включает гальваностегию - нанесение покрытия толщиной 5-50 мм и гальванопластику - получение сравнительно толстых, но легко отделяющихся слоев.

Гальваностегию используют для защиты изделий от коррозии, повышения их износостойкости, придания им способности отражать свет, электропроводности, термостойкости, антифрик-ционности и других свойств, а также для декоративной отделки.

Гальванопластика позволяет получать копии, воспросизво-дящие мельчайшие подробности рисунка или рельефа поверхности.

Анодирование, или анодное оксидирование - это образование на поверхности металла слоя его оксида при электролизе. Этому процессу обычно подвергают сплавы на основе легких металлов. Образующиеся слои оксидов могут быть тонкими, или барьерными (менее 1 мкм), и толстыми - фазовыми, или эмалеподобными (десятки и сотни мкм). Структуры и химический состав оксидов зависят от природы металла, электролита и условий процесса. При этом на одном и том же металле можно получать фазовые оксиды с разной структурой, а следовательно, и с различными свойствами (твердостью, окраской, электрической проводимостью и т.д.). Тонкие слои используют в основном в радиоэлектронике. Фазовые слои защищают металл от коррозии, обеспечивают износостойкость изделий, образуют прозрачные или цветные декоративные покрытия.

Каталитические процессы, называемые катализом, осуществляются с целью изменения скорости химических реакций.

Различают положительный и отрицательный катализ, в зависимости от того, ускоряет катализатор реакцию или замедляет ее. Как правило, термин «катализ* определяется как ускорение реакции, в то время как вещества, ее замедляющие, называются ингибиторами.

Важными компонентами промышленных катализаторов являются промоторы - вещества, добавление которых к катализатору в малых количествах (обычно долях процента) увеличивает его активность, селективность или устойчивость.

Вещества, действие которых на катализатор приводит к снижению его активности или полному прекращению каталитического действия, называются каталитическими ядами.

В качестве катализаторов в промышленности чаще всего применяют платину, железо, никель, кобальт и их оксиды, оксид ванадия (V), алюмосиликаты, некоторые минеральные кис-


лоты и соли; катализаторы используются как в окислительно-восстановительных, так и кислотно-основных реакциях.

Каталитические процессы, вызванные переносом электронов, относятся к окислительно-восстановительному катализу. Он применяется в производстве аммиака, азотной кислоты, серной кислоты и др.

К кислотно-основному катализу относятся каталитический крекинг, гидратация, дегидрация, многие реакции изомеризации, конденсации органических веществ.

В промышленности встречается и так называемый полифункциональный катализ, в котором имеет место совмещение рассмотренных выше двух важнейших видов катализа.

Похожие статьи

  • Мир культуры. Загадочный падишах. акбар великий Джалал уд-дин Мухаммад Акбар

    бакалавр истории по направлению "История"Волгоградский государственный университетмагистрант кафедры истории России ИИМОСТ ВолГУНаучный руководитель: Рамазанов С.П., доктор исторических наук, профессор, Волгоградский государственный...

  • Либерия Изобразительное искусство и ремесла

    Официальное название - Республика Либерия (Republic of Liberia).Расположена в западной части Африки. Площадь 111,4 тыс. км2, численность населения 3,3 млн чел. (2002). Государственный язык - английский. Столица - г. Монровия (1,3 млн чел.,...

  • Гибель колонны 245 мсп в аргунском ущелье

    Сложившееся в 1991 году двоевластие в Чечне, объявившей себя суверенной республикой, привело к противостоянию с федеральным правительством и внутренним конфликтам в борьбе за власть, закончившимся введением войск РФ в декабре 1994-го. Так...

  • Обозначение времени в английском языке?

    Всем кто интересуется изучением английского языка, приходилось сталкиваться со странными обозначениями p. m. и a. m , и вообще, везде, где упоминается о времени, почему-то используется всего 12 часовой формат . Наверное, для нас живущих...

  • Кто такие приписные крестьяне?

    В крестьянских сословиях исторического промежутка 18−19 вв. представлены самые разные социальные группы. Но на фоне остальных особое внимание обращают на себя посессионные и, конечно, приписные крестьяне. Именно они составляли в те времена...

  • Стихотворение Некрасова Н

    В августе, около "Малых Вежей", С старым Мазаем я бил дупелей.Как-то особенно тихо вдруг стало, На небе солнце сквозь тучу играло.Тучка была небольшая на нём, А разразилась жестоким дождём!Прямы и светлы, как прутья стальные, В землю...