Тепловой эффект процесса растворения крахмала. Теплота растворения солей и её определение. Пример расчетной задачи

Растворы - это однофазные системы переменного состава, состоящие из нескольких компонентов, один из которых является растворителем, а другие - растворенными веществами. То, что растворы однофазные системы, роднит их с химическими соединениями, а то, что они являются системами переменного состава, сближает их с механическими смесями. Поэтому и считают, что растворы имеют двойственную природу: с одной стороны, они сходны с химическими соединениями, а с другой - с механическими смесями.

Растворение - это физико-химический процесс. При физическом явлении разрушается кристаллическая решетка и происходит диффузия молекул растворенного вещества. При химическом явлении в процессе растворения молекулы растворенного вещества реагируют с молекулами растворителя.

Процесс растворения сопровождается выделением или поглощением теплоты. Эту теплоту, отнесенную к одному молю вещества, называют тепловым эффектом растворения, Qp.

  • Общий тепловой эффект растворения зависит от тепловых эффектов:
  • а) разрушения кристаллической решетки (процесс всегда идет с затратой энергии - Q 1 );
  • б) диффузии растворенного вещества в растворителе (затрата энергии - Q 2 );
  • в) гидратации (выделение теплоты, +Q 3 , так как гидраты образуются за счет возникновения непрочной химической связи, что всегда сопровождается выделением энергии).

Общий тепловой эффект растворения Qp будет равен сумме названных тепловых эффектов: Qp = (-Q 1 ) + (- Q 2 ) + (+Q 3 ); если Q 1 > Q 3 > то растворение идет с поглощением теплоты, то есть процесс эндотермический, если Q 1 < Q 3 , то растворение идет с выделением теплоты, то есть процесс экзотермический. Например, растворение NaCl, KN0 3 , NH 4 CNS идет с поглощением теплоты, растворение NaOH, H 2 S0 4 - с выделением теплоты.

Задача. Почему при растворении в воде хлорида натрия температура раствора понижается, а при растворении серной кислоты - повышается?

Ответ. При растворении хлорида натрия идет разрушение кристаллической решетки, что сопровождается затратой энергии. На процесс диффузии затрачивается незначительное количество энергии. Гидратация ионов всегда сопровождается выделением энергии. Следовательно, если в процессе растворения понижается температура, то энергия, необходимая для разрушения кристаллической решетки, оказывается большей, чем энергия, выделяющаяся при гидратации, и в целом раствор охлаждается.

Тепловой эффект растворения серной кислоты состоит, главным образом, из теплоты гидратации ионов, поэтому раствор разогревается.

Растворимость вещества - это его способность распределяться в среде растворителя. Растворимость (или коэффициент растворимости) определяется максимальным количеством граммов вещества, которое может раствориться в 100 граммах растворителя при данной температуре.

Растворимость большинства твердых веществ увеличивается с нагреванием. Есть исключения, то есть такие вещества, растворимость которых с увеличением температуры мало меняется (NaCl) или даже падает (Са(ОН) 2 ).

Растворимость газов в воде падает с нагреванием и увеличивается с повышением давления.

Растворимость веществ связана с природой растворенного вещества. Полярные и ионные соединения, как правило, хорошо растворяются в полярных растворителях, а неполярные соединения - в неполярных растворителях. Так, хлороводород и аммиак хорошо растворяются в воде, тогда как водород, хлор, азот растворяются в воде значительно хуже.

Раствором называют гомогенную систему, состоящую из двух или большего числа компонентов. При переходе вещества в раствор происходит разрыв межмолекулярных и ионных связей кристаллической решетки твердого вещества и переход его в раствор в виде отдельных молекул или ионов, которые равномерно распределяются среди молекул растворителя.

Для разрушения кристаллической решетки вещества необходимо затратить большую энергию. Эта энергия освобождается в результате гидратации (сольватации) ионов и молекул, т. е. химического взаимодействия растворяемого вещества с водой (или вообще с растворителем).

Значит, растворимость вещества зависит от разности величин энергии гидратации (сольватации) и энергии кристаллической решетки вещества.

Энергия растворения ∆Н раст - энергия, поглощающаяся (или выделяющаяся) при растворении 1 моль вещества в таком объеме растворителя, дальнейшее прибавление которого не вызывает изменения теплового эффекта.

Общий тепловой эффект растворения зависит от тепловых эффектов:

· а) разрушения кристаллической решетки (процесс всегда идет с затратой энергии ∆Н 1 >0);

· б) диффузии растворенного вещества в растворителе (затрата энергии ∆Н 2 >0);

· в) сольватации (гидратации) (выделение теплоты, ∆Н 3 <0, так как между растворителем и растворенным веществом образуются непрочные химические связи, что всегда сопровождается выделением энергии).

Общий тепловой эффект растворения ∆Н p будет равен сумме названных тепловых эффектов

Энергия растворения определяется по формуле 1.1:

∆Н pac т =∆Н к p . р. + ∆Н c , (1.1)

где ∆Н раст - энергия растворения вещества, кДж/моль;

∆Н c - энергия взаимодействия растворителя с растворяемым

веществом (энергия сольватации), кДж/моль;

∆Н к p .р. - энергия разрушения кристаллической решетки,

кДж/моль.

Если энергия разрушения кристаллической решетки больше энергии сольватации, то процесс растворения будет эндотермическим процессом, поскольку энергия, затраченная на разрушение кристаллической структуры, не будет скомпенсирована энергией, выделяющейся при сольватации.

Если энергия разрушения кристаллической решетки меньше энергии сольватации, то процесс растворения будет экзотермическим процессом, поскольку энергия затраченная на разрушение кристаллической структуры полностью скомпенсирована энергией, выделяющейся при сольватации. Следовательно, в зависимости от соотношения между энергией разрушения кристаллической решетки растворенного вещества и энергией взаимодействия растворенного вещества с растворителем (сольватация) энергия растворения может быть как положительной, так и отрицательной величиной.


Так, при растворении в воде хлорида натрия температура практически не изменяется, при растворении нитрата калия или аммония температура резко снижается, а при растворении гидроксида калия или серной кислоты температура раствора резко повышается.

Растворение твердых веществ в воде чаще бывает процессом эндотермическим, так как во многих случаях при гидратации выделяется теплоты меньше, чем тратится на разрушение кристаллической решетки.

Энергию кристаллической решетки можно рассчитать теоретически. Однако для теоретического расчета энергии сольватации до сих пор нет надежных методов.

Существуют некоторые закономерности, которые связывают растворимость веществ с их составом.

Для солей одного и того же аниона с разными катионами (или наоборот) растворимость будет наименьшей в том случае, когда соль образована ионами одинакового заряда и примерно одинакового размера, т.к. в этом случае энергия ионной кристаллической решетки максимальна.

Например, растворимость сульфатов элементов второй группы периодической системы уменьшается по подгруппе сверху вниз (от магния к барию). Это объясняется тем, что ионы бария и сульфата по размерам больше всего подходят друг к другу. В то время как катионы кальция и магния намного меньше анионов SO 4 2- .

Растворимость гидроксидов этих элементов, наоборот, увеличивается от магнию к бария, потому что радиусы катионов магния и анионов гидроксида практически одинаковые, а катионы бария по размеру очень отличаются от небольших анионов гидроксила.

Однако бывают исключения, например, для оксалатов и карбонатов кальция, стронция, бария и др.

1) используя изменение температуры при растворении.

Количество энергии, выделяющейся при нагревании или охлаждении тела рассчитывается по уравнению (1.2):

, (1.2)

где ∆Н раств. – энергия растворения вещества, кДж/моль;

с А - удельная теплоемкость вещества А, Дж/(г∙К);

m 1 - масса вещества А, г;

∆Т – изменение температуры, град.

ПРИМЕР 1.1 При растворении 8г хлорида аммония в 291г воды температура понизилась на 2 0 . Вычислите теплоту растворения NH 4 C1 в воде, принимая удельную теплоемкость полученного раствора равной теплоемкости воды 4,1870 Дж/(г * К).

Решение:

Используя уравнение (1.2), рассчитаем энергию, поглощаемую 291 г воды при растворении 8г NH 4 C1, т.к. при этом температура уменьшается на 2 0 С, то: ∆Н раств. = -(4,187∙291∙(-2)) = 2436,8 Дж.

Для определения энтальпии растворения NH 4 C1 составляем пропорцию, М (NH 4 C1)=53,49 г/моль:

8г NH 4 Cl - 2436,8 Дж

53,49г NH 4 C1 - х Дж

х = 1629,3Дж = 16,3кДж. Следовательно, растворение NH 4 C1 сопровождается поглощением тепла.

2) используя следствие из закона Гесса: тепловой эффект химической реакции (ΔН 0 х.р.) равен сумме теплот (энтальпий) образования продуктов реакции (ΔH 0 o 6р. . npo д.) минус сумма теплот (энтальпий) образования исходных веществ (ΔН 0 обр. исх.) с учётом коэффициентов перед формулами этих веществ в уравнении реакции.

ΔН 0 х.р. = ΣΔН 0 обр.прод - Σ ΔН 0 обр.исх, (1.3)

ПРИМЕР 1.2 Рассчитайте тепловой эффект реакции растворения алюминия в разбавленной соляной кислоте, если стандартные теплоты образования реагирующих веществ равны (кДж/моль): ∆Н 0 (НС1) { aq } = - 167,5; ∆Н 0 А1С1 3 {а q } = -672,3.

Решение: Реакция растворения А1 в соляной кислоте протекает по уравнению 2А1+6НС1 (aq) =2AlCl 3(aq) +3H 2 . Поскольку алюминий и водород являются простыми веществами, то для них ΔН 0 =0 кДж/моль, то тепловой эффект реакции растворения равен:

∆Н 0 298 =2∙∆Н 0 А1С1 3 {а q } -6∙∆Н 0 НС1 { aq }

∆Н 0 298 =2∙(-672,3)-6∙(-167,56)=-339,2кДж.

Используя следствие из закона Гесса можно определить возможность протекания реакции растворения. В этом случае необходимо рассчитать энергию Гиббса.

ПРИМЕР 1.3 Будет ли растворяться сульфид меди в разбавленной серной кислоте, если энергия Гиббса реагирующих веществ равна (кДж/моль): ∆G 0 (CuS (к))= -48,95; ∆G 0 (H 2 SО 4(aq))=-742,5; ∆G 0 (CuSО 4(aq))= -677,5, ∆G 0 (Н 2 S (г)) = -33,02.

Решение. Для ответа необходимо подсчитать ∆G 0 298 реакции растворения. Возможная реакция растворения CuS в разбавленной H 2 SO 4 протекает по уравнению:

CuS (к) + H 2 SО 4 (aq) = CuSО 4 (aq) + H 2 S (г)

∆G 0 298 =∆G 0 (CuSО 4(aq)) + ∆G 0 (Н 2 S (г)) -∆G 0 (CuS (K)) -∆G 0 (H 2 SО 4(aq))

∆G 0 298 = -677,5-33,02 + 742,5 + 48,95 =80,93 кДж/моль.

Так как ∆G>0, реакция невозможна, т. е. CuS не будет растворяться в разбавленной H 2 SO 4 .

Теплота гидратации ∆Н 0 гидрат. - теплота, выделяемая при взаимодействии 1 моль растворяемого вещества с растворителем - водой.

ПРИМЕР 1.4. При растворении 52,06г ВаС1 2 в 400 моль Н 2 О выделяется 2,16 кДж теплоты, а при растворении 1 моль ВаС1 2 ∙2Н 2 О в 400 моль Н 2 О поглощается 18,49 кДж теплоты. Вычислите теплоту гидратации безводного ВаС1 2 ,

Решение. Процесс растворения безводного ВаС1 2 можно представить следующим образом:

а) гидратация безводной соли ВаС1 2

ВаС1 2 +2Н 2 О = ВаС1 2 ∙2Н 2 О; ∆Н гидр. <0

б) растворение образовавшегося гидрата

BaCl 2 ∙2H 2 О+aq* → ВаС1 2 ∙2Н 2 О (aq); ∆Н раст. >0

Количество теплоты ∆Н 0 , выделяющееся при растворении безводного ВаС1 2 , равно алгебраической сумме тепловых эффектов этих двух процессов:

∆Н 0 == ∆Н 0 гидр +∆Н 0 раств; ∆Н 0 гидр = ∆Н 0 - ∆Н 0 раств

Для вычисления теплоты гидратации безводного хлорида бария надо определить теплоту растворения ВаС1 2 для тех же условий, что и для ВаС1 2 ∙2Н 2 О, т. е. для 1 моль ВаС1 2 (раствор в обоих случаях должен иметь одинаковую концентрацию); M(BaCl 2)=208,25 г/моль

52,06г ВаС1 2 - 2,16кДж

208,25г ВаС1 2 - х кДж

х=8,64 кДж/моль. Следовательно, ∆Н раств =-8,64 кДж/моль.

Тогда ∆Н гидр =18,49+8,64 =27,13 кДж/моль.

Главную роль в образовании сольватов играют непрочные межмолекулярные силы и, в частности, водородная связь. Так, рассматривая механизм растворения вещества на примере NaCl в воде, было видно, что положительные и отрицательные ионы, имеющиеся в кристаллической решетке, могут по законам электростатического взаимодействия притягивать или отталкивать полярные молекулы растворителя. Например, положительно заряженные ионы Na + могут быть окружены одним или несколькими слоями полярных молекул воды (гидратация ионов). Отрицательно заряженные ноны Сl - также могут взаимодействовать с молекулами полярного растворителя, но ориентация диполей воды вокруг ионов Сl - будет отличаться от ориентации вокруг ионов Na + (см. рис.1).

Кроме того, довольно часто растворяемое вещество может и химически взаимодействовать с растворителем. Например, хлор, растворяясь, реагирует с водой (хлорная вода)

Сl 2 +Н 2 0=НСl + НОСl

Аммиак, растворяясь в воде, одновременно образует гидроксид аммония (точнее гидрат аммиака)

NН 3 + Н 2 O=NН 3 Н 2 О↔Н 4 + + OН -

Как правило, при растворении поглощается или выделяется тепло и происходит изменение объема раствора. Объясняется это тем, что при растворении вещества происходит два процесса: разрушение структуры растворяемого вещества и взаимодействие частиц растворителя с частицами растворенного вещества. Оба эти процесса сопровождаются различными изменениями энергии. Для разрушения структуры растворяемого вещества требуются затраты энергии, тогда как при взаимодействии частиц растворителя с частицами растворенного вещества происходит выделение энергии.

В зависимости от соотношения этих тепловых эффектов процесс растворения вещества может быть эндотермическим или экзотермическим. Тепловые эффекты при растворении различных веществ различны. Так, при растворении серной кислоты в воде выделяется значительное количество теплоты. Аналогичное явление наблюдается при растворении в воде безводного сульфата меди (экзотермические реакции). При растворении в воде нитрата калия или нитрата аммония температура раствора резко понижается (эндотермические процессы), а при растворении в воде хлорида натрия температура раствора практически не меняется.

Исследование растворов различными методами показало, что в водных растворах образуются соединения частиц растворенного вещества с молекулами воды - гидраты. В случае сульфата меди присутствие гидратов легко обнаружить по изменению цвета: безводная соль белого цвета, растворяясь в воде, образует раствор синего цвета.

Иногда гидратная вода настолько прочно связана с растворенным веществом, что при выделении его из раствора входит в состав его кристаллов. Кристаллические вещества, содержащие в своем составе воду, называются кристаллогидратами . Вода, входящая в структуру таких кристаллов, называется кристаллизационной .

Термохимия.

Раздел химической термодинамики, посвященный исследованиям тепловых эффектов химических реакций, называют термохимией . Значение термохимии в практике весьма большое, если учесть, что тепловые эффекты рассчитывают при составлении тепловых балансов различных процессов и при исследовании химических равновесий.

Термохимия позволяет вычислять тепловые эффекты процессов, для которых отсутствуют экспериментальные данные. Это относится не только к химическим реакциям, но и к процессам растворения, испарения, сублимации, кристаллизации и др. фазовым переходам.

Тепловым эффектом химической реакции называют максимальное количество теплоты, которое выделяется или поглощается в необратимом процессе при постоянном объеме или давлении и при условии, что продукты реакции и исходные вещества имеют одинаковую температуру и отсутствуют другие виды работ, кроме расширения. Тепловой эффект считается положительным, когда теплота поглощается в ходе реакции (эндотермическая реакция), если теплота выделяется - отрицательным (экзотермическая реакция). Согласно закону Гесса , установленного экспериментально в 1846 г., - тепловой эффект процесса не зависит от промежуточных стадий процесса, а определяется лишь начальным и конечным состояниями системы.

Закон Гесса является вполне строгим только для процессов, протекающих при постоянном объеме, когда тепловой эффект равен ∆U (изменению внутренней энергии), или при постоянном давлении, когда тепловой эффект равен ∆Н (изменению энтальпии).

δ Qv = dU , Qv = ΔU

δ Qp = dH , Qp = ΔH

Для этих процессов он легко выводится из общего первого начала термодинамики (закон Гесса был установлен раньше, чем было введено уравнение первого начала термодинамики).

Выводы из закона Гесса :

1. Теплота образования соединения из исходных веществ не зависит от способа получения этого соединения. Тепловой эффект реакции равен алгебраической сумме теплот образования продуктов реакции минус алгебраическая сумма теплот образования исходных веществ, с учетом стехиометрического коэффициента.

Теплота разложения соединения до тех же исходных веществ равна и противоположна по знаку теплоте образования соединения из этих веществ. Тепловой эффект разложения какого-либо химического соединения точно равен и противоположен по знаку тепловому эффекту его образования

ΔН разл. = - ΔН обр.

  1. Если две реакции имеют одинаковые начальные состояния и разные конечные, то разность их тепловых эффектов равна тепловому эффекту перехода из одного конечного состояния в другое.

3. Если из двух различных систем в результате различных процессов образовался одинаковый продукт, то разность между значениями тепловых эффектов этих процессов равна теплоте перехода из первой системы во вторую.

Следствия из закона Гесса:

1. Тепловой эффект реакции равен сумме теплот образования реагентов из простых веществ. Эта сумма разбивается на два слагаемых: сумма теплот образования продуктов (положительная) и сумма теплот образования исходных веществ (отрицательная) с учетом стехиометрических коэффициентов.

ΔHх.р. = ∑ (ΔH f ν i) прод. - ∑(ΔH f ν i) исх.

  1. Тепловой эффект реакции равен сумме теплот сгорания исходных веществ минус теплот сгорания продуктов реакции, с учетом стехиометрического коэффициента.

ΔHх.р. = ∑ (ΔH сг i · ν i) исх. - ∑(ΔH сг · ν i) пр.

ΔНх.р.= ΔН сг (СН 4) - ΔН сг (СО 2) - 2 ΔН сг (Н 2 О)

ΔН сг (О 2) = 0

Таким образом, закон Гесса применяется при различных термохимических расчетах, и является основным законом термохимии. Он дает возможность вычислить тепловые эффекты процессов, для которых экспериментальные данные отсутствуют; тепловые эффекты реакций, протекающих в калориметре; для медленных реакций, т. к. теплота в ходе реакции будет рассеиваться, а во многих случаях и для таких, для которых они не могут быть измерены в нужных условиях, или когда процессы еще не осуществлялись. Это относится как к химическим реакциям, так и к процессам растворения, испарения, кристаллизации, адсорбции и др.

Однако применение данного закона требует строгого соблюдения предпосылок, лежащих в его основе. Прежде всего, необходимо, чтобы в обоих процессах были действительно одинаковы начальные и конечные состояния. При этом существенным является не только одинаковость химического состава продуктов, но и условий их существования (температура, давление и др.) и агрегатного состояния, а для кристаллических веществ также и одинаковость кристаллической модификации. При точных расчетах в случае, если какое либо из веществ, участвующих в реакциях, находится в высокодисперсном (т. е. сильно раздробленном) состоянии, существенной оказывается иногда даже и одинаковость степени дисперсности веществ.

Очевидно, что тепловой эффект будет различен также в зависимости от того, будут ли получаемые или исходные вещества находиться в чистом состоянии или в растворе, отличаясь на величину теплоты растворения. Тепловой эффект реакции, протекающей в растворе, равен сумме теплового эффекта самой реакции и теплового эффекта процесса растворения химических соединений в данном растворителе.

Для термохимических расчетов необходимо, чтобы все тепловые эффекты были отнесены к реагентам и продуктам в стандартном состоянии. Стандартное состояние вещества - это наиболее термодинамически устойчивая форма при давлении 1 атм, температуре 298,15 К.

Стандартная теплота образования DH° f - тепловой эффект образования 1 моля любого вещества из простых веществ при стандартных условиях.

В связи с этим, теплоты образования простых веществ равны нулю, поскольку они отвечают реакциям

Однако, теплоты реакций

не равны нулю, так как являются теплотами процессов: агрегатного превращения (а), полиморфного превращения (б), диссоциации (в).

Стандартной теплотой образования иона в водном растворе называется теплота образования одного моля гидратированного иона в растворе с молярной концентрацией иона, равной единице, из простых веществ при стандартных условиях. При этом теплота образования иона водорода условно принята равной нулю.

С (графит) + 3/2О 2 (газ) + аq + 2е → СО 3 2- ·аq, ΔН f (CO 3 2- aq)

Стандартная теплота сгорания DН° сгор . - это теплота сгорания 1 моля органического соединения при стандартных условиях до СO 2 , Н 2 O, SO 2 , N 2 . Если продукты сгорания, кроме СO 2 и Н 2 O, есть и другие, это оговаривается в каждой реакции особо. Пример:

Теплоты сгорания водорода и углерода совпадают с теплотами образования Н 2 О и СО 2 , так как это тепловые эффекты реакций

Стандартная теплота фазовых превращений - это теплота превращения 1 моля вещества при температуре перехода при Р = 1 атм. Сюда относятся теплоты плавления, испарения, возгонки (сублимации), полиморфных превращений.

Интегральной теплотой растворения DН m называют тепловой эффект растворения с образованием раствора определенной концентрации при расчете на 1 моль растворенного вещества.

Теплота растворения газов обычно близка к теплоте их конденсации, а твердых веществ с атомной или молекулярной кристаллической решеткой - к теплоте плавления.

Более сложные процессы происходят при растворении электролитов. Теплоты растворения электролитов являются алгебраической суммой двух основных тепловых эффектов: поглощения теплоты при разрушении кристаллической решетки с удалением образовавшихся ионов на расстояния, отвечающие объему раствора, и выделения теплоты при сольватации (гидратации) каждого иона молекулами растворителя. Оба эффекта достигают сотен килоджоулей на моль. Алгебраическая сумма их - наблюдаемая теплота растворения - имеет порядок единиц и десятков килоджоулей. Знак суммарного эффекта зависит от того, какое из слагаемых больше по абсолютной величине.

Теплота гидратообразования - это теплота, выделяющаяся при присоединении к одному молю безводной соли кристаллизационной воды. Ее определяют из интегральных теплот растворения безводной соли и кристаллогидрата в таких количествах воды, чтобы полученный раствор имел бы одинаковую концентрацию. Например, получить водный раствор MgCl 2 можно двумя путями:

1 - растворением безводной соли MgCl 2

2 - растворением в воде кристаллогидрата MgCl 2 6H 2 0, предварительно полученного из MgCl 2 и воды.

Из данной схемы по закону Гесса можно получить теплоту гидратообразования:

DН гидр = DH m (MgCl 2) - DH m (MgCl 2 . 6H 2 0)

Теплота нейтрализации . Опыт показывает, что в случае разбавленных растворов теплота реакции нейтрализации молярной массы эквивалента сильной кислоты (НС1, H 2 S0 4 и др.) сильным основанием (NaOH, КОН) не зависит от природы кислоты или основания. Это объясняется тем, что протекает только одна химическая реакция

DH нейтр. = -55,9 кДж/моль

Принейтрализации разбавленного раствора слабойкислоты или основания наблюдаемая теплота нейтрализации может быть меньше или больше за счет теплоты диссоциации. Теплота диссоциации складывается из теплоты, поглощаемой при распаде молекулы на ионы и теплоты гидратации (сольватации) ионов молекулами растворителя и потому может быть как положительной, так и отрицательной. Таким образом, теплота нейтрализации слабых кислот и оснований равна

DН нейтр. = - 55,9 + DН дисс.

Закон Гесса

Г.И. Гесс в 1836 г. еще до того, как было сформулировано l начало термодинамики (1842), экспериментально открыл основной закон термохимии:

«Тепловой эффект реакции не зависит от промежуточных стадий, а определяется лишь начальным и конечным состоянием системы.»

При этом процесс должен протекать термодинамически необратимо, а получаемые продукты иметь ту же температуру, что и исходные вещества.

Количество тепла, которое выделяется или поглощается при растворении 1 моля вещества в таком количестве растворителя, дальнейшее прибавление которого уже не вызывает изменения теплового эффекта, называется теплотой растворения.

При растворении солей в воде знак и величина теплового эффекта растворения ∆Н определяется двумя величинами: энергией, затрачиваемой на разрушение кристаллической решетки вещества (∆H 1) - эндотермический процесс, и энергией, выделяемой при физико-химическом взаимодействии частиц растворяемого вещества с молекулами воды (процесс гидратации) (∆Н 2) - экзотермический процесс. Тепловой эффект процесса растворения определяется алгебраической суммой тепловых эффектов этих двух процессов:

Н = ∆H 1 + ∆H 2 .

Тепловой эффект процесса растворения может быть как положительным, так и отрицательным.

Для практического определения теплот растворения обычно определяют количество тепла, поглощаемого или выделяемого при растворении произвольного количества соли. Затем эту величину пересчитывают на 1 моль, так как количество тепла прямо пропорционально количеству растворенного вещества.

Для термохимических измерений используют прибор, называемый калориметром.

Определение теплоты растворения ведут по изменению температуры раствора, поэтому точность определения зависит от цены деления (точности) используемого термометра. Обычно диапазон измеряемых температур лежит в интервале 2-3°С, а цена деления термометра не более чем 0,05°С.

ХОД РАБОТЫ

Для выполнения работы используйте калориметр, состоящий из теплоизоляционного корпуса, крышки со встроенными электрической мешалкой и термометром, а также отверстием с пробкой.

Получите у преподавателя задание: тип растворяемого вещества.

Откройте пробку на крышке калориметра и залейте в него 200 мл воды, закройте пробку и выдержите 10-15 минут для установления постоянной температуры (t нач ). За это время на весах, используя кальку или часовое стекло, получите навеску вашего вещества (1,5 - 2,0 г) предварительно тщательно растертого в ступке. Полученную навеску, по возможности быстро, через отверстие в крышке поместите в калориметр при включенной мешалке. Следите за изменением температуры. После установления теплового равновесия (температура стабилизируется) запишите максимальную температуру раствора (t maх)и рассчитайте ∆t = t max – t нач. По полученным данным рассчитайте теплоту растворения соли, используя уравнение:



Н раств = q M/m , Дж/моль, (1)

где q - теплота, выделившаяся (или поглотившаяся) в калориметре (кДж); m - навеска соли (г); М - молярная масса растворяемого вещества (г/моль);

Теплота q определяется на основании экспериментальных данных из соотношения:

q = (m ст C ст + m р-ра C р-ра)∆t ,(2)

где m ст - масса стакана (г); m р-ра - масса раствора, равная сумме масс воды и соли в стакане (г); С ст - удельная теплоемкость стекла 0,753 Дж/г∙К;

С р-ра - удельная теплоемкость раствора (воды) 4,184 Дж/г∙К.

Сравнив полученный результат с данными табл.2 , рассчитайте относительную ошибку опыта (в %).

Теплота гидратации соли и её определение

Физико-химический процесс взаимодействия частиц растворенного вещества с молекулами воды (растворителя) называется гидратацией. В процессе гидратации образуются сложные пространственные структуры, называемые гидратами, и при этом в окружающую среду выделяется энергия в виде тепла.

Тепловой эффект реакции образования 1 моль гидратированной соли из безводной соли называется теплотой гидратации.

При растворении в воде безводной соли, способной образовывать гидраты, последовательно протекают два процесса: гидратация и растворение образовавшегося кристаллогидрата. Например:

CuSO 4(тв) + 5Н 2 О (ж) = CuSO 4 ×5H 2 О (тв),

CuSO 4 ×5H 2 О (тв) + n H 2 O (ж) = CuSO 4(р) ,

CuSO 4(р) + n H 2 O (ж) = Cu 2+ (р) + SO 4 2- (р)

Растворение электролитов сопровождается процессом электролитической диссоциации. Теплота гидратации молекулы равна сумме теплот гидратации образовавшихся при этом ионов с учетом теплоты диссоциации. Процесс гидратации-экзотермический.

Приближенно теплота гидратации вещества может быть определена как разность между теплотами растворения безводной соли и ее кристаллогидрата:

H гидр = ∆H безв - ∆H крист, (3)

где ∆H гидр - теплота гидратации молекул;

H безв - теплота растворения безводной соли;

H крист - теплота растворения кристаллогидрата.

Таким образом, для определения теплоты гидратации молекул необходимо предварительно определить теплоту растворения безводной соли и теплоту растворения кристаллогидрата этой соли.

ХОД РАБОТЫ

Теплоту растворения безводного сульфата меди CuS0 4 и кристаллогидрата CuS0 4 ×5H 2 0 необходимо определить, используя лабораторный калориметр и методику проведения работы 1.

Для более точного определения теплоты гидратации необходимо получить навески по 10-15 г кристаллогидрата и безводной соли сульфата меди. Необходимо знать, что безводная соль меди легко поглощает воду из воздуха и переходит в гидратированное состояние, поэтому безводную соль необходимо взвешивать непосредственно перед опытом. По полученным данным необходимо рассчитать теплоты растворения безводной соли и кристаллогидрата, а затем из соотношения (3) определить теплоту гидратации. Рассчитайте относительную ошибку опыта в процентах, используя полученные данные и данные табл.2.

Похожие статьи