Уравнение гармонических колебаний физика. Колебания. Гармонические колебания. Уравнение гармонических колебаний. Вихревое электрическое поле

Колебания и волны

А. амплитудой

В. циклической частотой

С. начальной фазой

Начальная фаза гармонических колебаний материальной точки определяет

А. амплитуду колебаний

В. отклонение точки от положения равновесия в начальный момент времени

С. период и частоту колебаний

D. максимальную скорость при прохождении точкой положения равновесия

E. полный запас механической энергии точки

3 Для гармонического колебания, изображенного на рисунке, частота колебаний равна…

Тело совершает гармонические колебания с круговой частотой 10 с-1. Если тело при прохождении им положения равновесия имеет скорость 0,2 м/с, то амплитуда колебаний тела равна

5. Какое из ниже приведенных высказываний является верным:

А. При гармонических колебаниях возвращающая сила

В. Прямо пропорциональна смещению.

С. Обратно пропорциональна смещению.

D. Пропорциональна квадрату смещения.

E. Не зависит от смещения.

6. Уравнение свободных гармонических незатухающих колебаний имеет вид:

7. Уравнение вынужденных колебаний имеет вид:

8. Уравнение свободных затухающих колебаний имеет вид:

9.Верным(и) является(ются) следующее из следующих выражений:

А. Коэффициент затухания гармонических затухающих колебаний не зависит от не от кинематической, не от динамической вязкости среды, в которой происходят такие колебания.

В. Собственная частота колебаний равна частоте затухающих колебаний.

С. Амплитуда затухающих колебаний является функцией зависимости от времени (А(t)).

D. Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодичными.

10. Если массу груза 2 кг, подвешенного на пружине и совершающего гармонические колебания с периодом Т, увеличить на 6 кг, то период колебаний станет равным…

11. Скорость прохождения положения равновесия грузом массы m, колеблющегося на пружине жесткостью k с амплитудой колебаний А, равна…

12. Математический маятник совершил 100 колебаний за 314 С. Длина маятника равна…

13. Выражение, определяющее полную энергию E гармонического колебания материальной точки имеет вид…

Какие из следующих величин в процессе гармонических колебаний остаются неизменными: 1) скорость; 2) частота; 3) фаза; 4) период; 5) потенциальная энергия; 6) полная энергия.



D. изменяются все величины

Укажите все верные утверждения.1) Механические колебания могут быть свободными и вынужденными.2) Свободные колебания могут происходить только в колебательной системе.3) Свободные колебания могут происходить не только в колебательной системе. 4) Вынужденные колебания могут происходить только в колебательной системе.5) Вынужденные колебания могут происходить не только в колебательной системе.6) Вынужденные колебания могут происходить не могут происходить в колебательной системе.

А. Все утверждения верны

В. 3, 6, 8 и 7

Е.Все утверждения не верны

Что называется амплитудой колебаний?

A. Смещение.

В. Отклонение тел А.

С. Движение тел А.

D. Наибольшее отклонение тела от положения равновесия.

Какой буквой обозначают частоту?

Какова скорость тела при прохождении положения равновесия?

A. Равна нулю.

С. Минимальн А.

D. Максимальн А.

Каким свойством обладает колебательное движение?

A. Сохраняться.

В. Изменяться.

С. Повторяться.

D. Замедляться.

E. Среди ответов А - D нет правильного

Что такое период колебаний?

A. Время одного полного колебания.

В. Время колебаний до полной остановки тел А.

С. Время, затраченное на то, чтобы отклонить тело от положения равновесия.

D. Среди ответов А - D нет правильного

Какой буквой обозначают период колебаний?

Какова скорость тела при прохождении точки максимального отклонения?

A. Равна нулю.

В. Одинакова при любых положениях тел А.

С. Минимальн А.

D. Максимальн А.



E. Среди ответов А - Е нет правильного

Каково значение ускорения в точке положения равновесия?

A. Максимально.

В. Минимально.

С. Одинаково при любых положениях тел А.

D. Равно нулю.

E. Среди ответов А - Е нет правильного

Колебательная система - это

А. физическая система, в которой при отклонении от положения равновесия существуют колебания

В. физическая система, в которой при отклонении от положения равновесия возникают колебания

С. физическая система, в которой при отклонении от положения равновесия возникают и существуют колебания

D. физическая система, в которой при отклонении от положения равновесия не возникают и не существуют колебания

Маятник – это

А. тело, подвешенное на нити или пружине

В. твердое тело, совершающее под действием приложенных сил колебания

С. Среди ответов нет правильного

D. твердое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси.

Выберите верный ответ(ы) на следующий вопрос: От чего зависит частота колебаний пружинного маятника? 1) от его массы;2) от ускорения свободного падения;3) от жесткости пружины;4) от амплитуды колебаний?

Укажите, какие из перечисленных ниже волн являются продольными:1) звуковые волны в газах;2) ультразвуковые волны в жидкостях;3) волны на поверхности воды;4)радиоволны;5) световые волны в прозрачных кристаллах

От каких из перечисленных ниже параметров зависит период колебаний математического маятника: 1) массы маятника; 2) длины нити; 3) ускорения свободного падения в месте нахождения маятника; 4) амплитуды колебаний?

Источником звука является

А. любое колеблющееся тело

В. тела, колеблющиеся с частотой более 20 000 Гц

С. тела, колеблющиеся с частотой от 20 Гц до 20000 Гц

D. тела, колеблющиеся с частотой ниже 20 Гц

49. Громкость звука определяется…

А. амплитудой колебаний источника звука

В. частотой колебаний источника звука

С. периодом колебаний источника звука

D. скоростью движения источника звука

Какой волной является звук?

А. продольной

В. поперечной

С. имеет продольно-поперечный характер

53. Для нахождения скорости звука нужно…

А. длину волны разделить на частоту колебаний источника звука

В. длину волны разделить на период колебаний источника звука

С. длину волны умножить на период колебаний источника звука

D. период колебаний разделить на длину волны

Что такое гидромеханика?

A. наука о движении жидкости;

В. наука о равновесии жидкостей;

С. наука о взаимодействии жидкостей;

D. наука о равновесии и движении жидкостей.

Что такое жидкость?

A. физическое вещество, способное заполнять пустоты;

В. физическое вещество, способное изменять форму под действием сили сохранять свой объем;

С. физическое вещество, способное изменять свой объем;

D. физическое вещество, способное течь.

Давление определяется

А. отношением силы, действующей на жидкость к площади воздействия;

В. произведением силы, действующей на жидкость на площадь воздействия;

С. отношением площади воздействия к значению силы, действующей на жидкость;

D. отношением разности действующих усилий к площади воздействия.

Укажите верные высказывания

А. Увеличение скорости течения вязкой жидкости вследствие неоднородности давления по поперечному сечению трубы создает завихрение и движение новится турбулентным.

В. При турбулентном течении жидкости число Рейнольдса меньше критического.

С. Характер течения жидкости по трубе не зависит от скорости ее течения.

D. Кровь является ньютоновской жидкостью.

Укажите верные высказывания

А. При ламинарном течении жидкости число Рейнольдса меньше критического.

В. Вязкость ньютоновских жидкостей не зависит от градиента скорости.

С. Капиллярный метод определения вязкости основан на законе Стокса.

D. При повышении температуры жидкости ее вязкость не изменяется.

Укажите верные высказывания

А. При определении вязкости жидкости методом Стокса движение шарика в жидкости должно быть равноускоренным.

В. Число Рейнольдса является критерием подобия: при моделировании кровеносной системы:соответствие модели и натуры наблюдается тогда, когда число Рейнольдса для них одинаково.

С. Гидравлическое сопротивление тем больше, чем меньше вязкость жидкости, длина трубы и больше площадь ее поперечного сечения.

D. Если число Рейнольдса меньше критического, то движение жидкости турбулентное, если больше, то ламинарное.

Укажите верные высказывания

А. Закон Стокса получен в предположении, что стенки сосуда не влияют на движение шарика в жидкости.

В. При нагревании вязкость жидкости уменьшается.

С. При течении реальной жидкости отдельные слои ее воздействуют друг на друга с силами,перпендикулярными слоям.

D. При заданных внешних условиях через горизонтальную трубу постоянного сечения протекает тем больше жидкости, чем больше ее вязкость.

02. Электродинамика

1. Силовыми линиями электрического поля называются:

1. геометрическое место точек с одинаковой напряжённостью

2. линии, в каждой точке которых касательные совпадают с направлением вектора напряжённости

3. линии, соединяющие точки с одинаковой напряжённостью

3. Электростатическим полем называется:

1. электрическое поле неподвижных зарядов

2. особый вид материи, посредством которого взаимодействуют все тела, обладающие массой

3. особый вид материи, посредством которого взаимодействуют все элементарные частицы

1. энергетической характеристикой поля, величиной векторной

2. энергетической характеристикой поля, величиной скалярной

3. силовой характеристикой поля, величиной скалярной

4. силовой характеристикой поля, величиной векторной

7. В каждой точке электрического поля, созданного несколькими источниками, напряжённость равна:

1. алгебраической разности напряжённостей полей каждого из источников

2. алгебраической сумме напряжённостей полей каждого из источников

3. геометрической сумме напряжённостей полей каждого из источников

4. скалярной сумме напряжённостей полей каждого из источников

8. В каждой точке электрического поля, созданного несколькими источниками, потенциал электрического поля равен:

1. алгебраической разности потенциалов полей каждого из источников

2. геометрической сумме потенциалов полей каждого из источников

3. алгебраической сумме потенциалов полей каждого из источников

10. Единицей измерения дипольного момента токового диполя в системе СИ является:

13. Работа электрического поля по перемещению заряженного тела из точки 1 в точку 2 равна:

1. произведению массы на напряжённость

2. произведению заряда на разность потенциалов в точках 1 и 2

3. произведению заряда на напряжённость

4. произведению массы на разность потенциалов в точках 1 и 2

15. Система из двух точечных электродов, находящихся в слабопроводящей среде при постоянной разности потенциалов между ними, называется:

1. электрическим диполем

2. токовым диполем

3. электролитической ванной

16. Источником электростатического поля являются (указать неверное):

1. одиночные заряды

2. системы зарядов

3. электрический ток

4. заряженные тела

17. Магнитным полем называется:

1. одна из составляющих электромагнитного поля, посредством которой взаимодействуют неподвижные электрические заряды

2. особый вид материи, посредством которого взаимодействуют тела, обладающие массой

3. одна из составляющих электромагнитного поля, посредством которой взаимодействуют движущиеся электрические заряды

18. Электромагнитным полем называется:

1. особый вид материи, посредством которого взаимодействуют электрические заряды

2. пространство, в котором действуют силы

3. особый вид материи, посредством которого взаимодействуют тела, обладающие массой

19. Переменным электрическим током называется электрический ток:

1. изменяющийся только по величине

2. изменяющийся и по величине и по направлению

3. величина и направление которого не меняются со временем

20. Сила тока в цепи синусоидального переменного тока совпадает по фазе с напряжением, если цепь состоит:

1. из омического сопротивления

2. из емкостного сопротивления

3. из индуктивного сопротивления

24. Импедансом цепи переменного тока называется:

1. полное сопротивление цепи переменного тока

2. реактивная составляющая цепи переменного тока

3. омическая составляющая цепи переменного тока

27. Носителями тока в металлах являются:

1. электроны

4. электроны и дырки

28. Носителями тока в электролитах являются:

1. электроны

4. электроны и дырки

29. Проводимость биологических тканей является:

1. электронной

2. дырочной

3. ионной

4. электронно-дырочной

31. Раздражающее действие на организм человека оказывает:

1. переменный ток высокой частоты

2. постоянный ток

3. ток низкой частоты

4. все перечисленные виды токов

32. Синусоидальным электрическим током называется электрический ток, в котором по гармоническому закону меняется со временем:

1. амплитудное значение силы тока

2. мгновенное значение силы тока

3. эффективное значение силы тока

34. В электрофизиотерапии применяются:

1. исключительно переменные токи высокой частоты

2. исключительно постоянные токи

3. исключительно импульсные токи

4. все перечисленные виды токов

Импедансом называется. . .

1. зависимость сопротивления цепи от частоты переменного тока;

2. активное сопротивление цепи;

3. реактивное сопротивление цепи;

4. полное сопротивление цепи.

Поток протонов, летящий прямолинейно, попадает в однородное магнитное поле, индукция которого перпендикулярна к направлению полета частиц. По какой из траекторий будет двигаться поток в магнитном поле?

1. По окружности

2. По прямой

3. По параболе

4. По винтовой линии

5. По гиперболе

С помощью катушки, подключенной к гальванометру, и полосового магнита моделируются опыты Фарадея. Как изменяется показание гальванометра, если магнит вносить в катушку сначала медленно, а затем значительно быстрее?

1. показания гальванометра увеличатся

2. изменений не произойдет

3. показания гальванометра уменьшатся

4. стрелка гальванометра отклонится в противоположную сторону

5. все определяется намагниченностью магнита

В цепь переменного тока включены последовательно резистор, конденсатор и катушка. Амплитуда колебаний напряжения на резисторе 3 В, на конденсаторе 5 В, на катушке 1 В. Какова амплитуда колебаний напряжения на трех элементах цепи.

174. Электромагнитная волна излучается... .

3. покоящимся зарядом

4. электрическим током

5. другие причины

Что называют плечом диполя?

1. расстояние между полюсами диполя;

2.расстояние между полюсами, умноженное на величину заряда;

3.кратчайшее расстояние от оси вращения до линии действия силы;

4.расстояние от оси вращения до линии действия силы.

Под действием однородного магнитного поля по окружности вращаются две заряженные частицы с одинаковыми скоростями. Масса второй частицы в 4 раза больше массы первой, заряд второй частицы в два раза превышает заряд первой. Во сколько раз радиус окружности, по которой движется вторая частица, больше радиуса первой частицы?

Что такое поляризатор.

3. устройство, преобразующее естественный свет в поляризованный.

Что такое поляриметрия?

1. превращение естественного света в поляризованный;

4. вращение плоскости колебаний поляризованного света.

Аккомодацией называют. . .

1. приспособление глаза к видению в темноте;

2. приспособление глаза к четкому видению различно удаленных предметов;

3. приспособление глаза к восприятию различных оттенков одного цвета;

4. величину, обратную пороговой яркости.

152. Преломляющие среды глаза:

1) роговица, жидкость передней камеры, хрусталик, стекловидное тело;

2) зрачок, роговица, жидкость передней камеры, хрусталик, стекловидное тело;

3) воздух-роговица, роговица - хрусталик, хрусталик - зрительные клетки.

Что такое волна?

1. любой процесс, более или менее точно повторяющийся через равные промежутки времени;

2. процесс распространения каких-либо колебаний в среде;

3. изменение смещения во времени по закону синуса или косинуса.

Что такое поляризатор.

1. устройство, с помощью которого измеряют концентрацию сахарозы;

2. устройство, вращающее плоскость колебаний светового вектора;

3. устройство, преобразующее естественный свет в поляризованный.

Что такое поляриметрия?

1. превращение естественного света в поляризованный;

2. прибор для определения концентрации раствора вещества;

3. метод определения концентрации оптически-активных веществ;

4. вращение плоскости колебаний поляризованного света.

180. Датчики используются для:

1. измерения электрического сигнала;

2. преобразования медико-биологической информации в электрический сигнал;

3. измерения напряжения;

4. электромагнитного воздействия на объект.

181. электроды используются только для съема электрического сигнала:

182. электроды используются для:

1. первичного усиления электрического сигнала;

2. преобразования измеряемой величины в электрический сигнал;

3. электромагнитного воздействия на объект;

4. съема биопотенциалов.

183. К генераторным датчикам относятся:

1. индуктивные;

2. пьезоэлектрические;

3. индукционные;

4. реостатные.

Установите соответствие правильной последовательности формирования изображения предмета в микроскопе при визуальном рассмотрении на расстоянии наилучшего зрения: 1) Окуляр.2) Предмет.3) Мнимое изображение.4) Действительное изображение.5) Источник света.6) Объектив

190. Укажите правильное высказывание:

1) Лазерное излучение когерентное, и именно поэтому оно широко применяется в медицине.

2) По мере распространения света в среде с инверсной населенностью его интенсивность увеличивается.

3) Лазеры создают большую мощность излучения, так как их излучение монохроматическое.

4) Если возбужденная частица самопроизвольно переходит на нижний уровень, то при этом происходит индуцированное излучение фотона.

1. Только 1, 2 и 3

2. Все - 1,2,3 и 4

3. Только 1 и 2

4. Только 1

5. Только 2

192. Электромагнитная волна излучается... .

1. зарядом, который движется с ускорением

2. равномерно движущимся зарядом

3. покоящимся зарядом

4. электрическим током

5. другие причины

Какие из перечисленных условий приводят к возникновению электромагнитных волн: 1) Изменение во времени магнитного поля. 2) Наличие неподвижных заряженных частиц. 3)Наличие проводников с постоянным током. 4) Наличие электростатического поля. 5) Изменение во времени электрического поля.

Чему равен угол между главными сечениями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшилась в 4 раза? Считая коэффициенты прозрачности поляризатора и анализатора равными 1, укажите правильный ответ.

2. 45 град

Известно, что явление вращения плоскости поляризации заключается в повороте плоскости колебаний световой волны на угол при прохождении ею расстояния d в оптически активном веществе. Какая связь между углом поворота и d для твердых оптически активных тел?

Поставить в соответствие виды люминесценции с способами возбуждения: 1. а - ультрафиолетовое излучение; 2. б - пучок электронов; 3. в - электрическое поле; 4. г - катодолюминесценция; 5. д - фотолюминесценция; 6. е - электролюминесценция

Ад бг ве

18. Свойства лазерного излучения: а. широкий спектр; б. монохроматическое излучение; в. высокая направленность пучка; г. сильная расходимость пучка; д. когерентное излучение;

Что такое рекомбинация?

1. взаимодействие ионизирующей частицы с атомом;

2. превращение атома в ион;

3. взаимодействие иона с электронами с образованием ими атома;

4. взаимодействие частицы с античастицей;

5. изменение комбинации атомов в молекуле.

36. Укажите правильные высказывания:

1) Ион - это электрически заряженная частица, образующаяся при потере или присоединении электронов атомами, молекулами, радикалами.

2) Ионы могут иметь положительный или отрицательный заряд, кратный заряду электрона.

3) Свойства иона и атома одинаковы.

4) Ионы могут находиться в свободном состоянии или в составе молекул.

37. Укажите правильные высказывания:

1) Ионизация - образование ионов и свободных электронов из атомов, молекул.

2) Ионизация - превращение атомов, молекул в ионы.

3) Ионизация - преобразование ионов в атомы, молекулы.

4) Энергия ионизации - энергия, получаемая электроном в атоме, достаточная для преодоления энергии связи с ядром и его ухода из атома.

38. Укажите правильные высказывания:

1) Рекомбинация - образование атома из иона и электрона.

2) Рекомбинация - образование двух гамма-квантов из электрона и позитрона.

3) Аннигиляция - взаимодействие иона с электроном с образованием атома.

4) Аннигиляция превращение частиц и античастиц в результате взаимодействия в электромагнитные излучения.

5) Аннигиляция - превращение материи из одной формы в другую, один из видов взаимопревращения частиц.

48. Укажите вид ионизирующего излучения, коэффициент качества которого имеет наибольшее значение:

1. бета-излучение;

2. гамма-излучение;

3. рентгеновское излучение;

4. альфа-излучение;

5. поток нейтронов.

По люминесценции изучали степень окисления плазмы крови пациента. Использовали плазму, содержащую, среди прочих составляющих, продукты окисления липидов крови, способные люминесцировать. За определенный интервал времени смесь, поглотив 100 квантов света с длиной волны 410 нм, высветила 15 квантов излучения с длиной волны 550 нм. Каков квантовый выход люминесценции данной плазмы крови?

Какие из перечисленных свойств относятся к тепловому излучению: 1-электромагнитная природа излучения, 2-излучение может находиться в равновесии с излучающим телом, 3-сплошной спектр частот, 4-дискретный спектр частот.

1. Только 1, 2 и 3

2. Все - 1,2,3 и 4

3. Только 1 и 2

4. Только 1

5. Только 2

По какой формуле вычисляется вероятность противоположного события, если известна вероятность Р(А) события А?

A. Р(Aср) = 1 + Р(А);

B. Р(Aср) = Р(А) · Р(Aср·А);

C. Р(Aср) = 1 - Р(А).

Какая из формул верна?

А. Р(АВС) = Р(А)Р(В/А)Р(ВС);

В. Р(АВС) = Р(А)Р(В)Р(С);

С. Р(АВС) = Р(А/В)Р(В/А)Р(В/С).

43. Вероятность появления хотя бы одного из событий А1, А2, …, Аn , независимых друг от друга, равна

А. 1 – (Р(А1) · Р(А2)Р ·…· Р(Аn));

В. 1 – (Р(А1) · Р(А2/ А1)Р ·…· Р(Аn));

С. 1 – (Р(Aср1) · Р(Aср2)Р ·…· Р(Aсрn)).

В приборе имеются три независимо установленных сигнализатора об аварии. Вероятность того, что в случае аварии сработает первый равна 0.9, второй - 0.7, третий - 0.8. Найдите вероятность того, что при аварии не сработает ни один сигнализатор

62. Николай и Леонид выполняют контрольную работу. Вероятность ошибки при вычислениях у Николая составляет 70%, а у Леонида – 30%. Найдите вероятность того, что Леонид допустит ошибку, а Николай нет.

63. Музыкальная школа проводит набор учащихся. Вероятность быть не зачисленным во время проверки музыкального слуха составляет 40%, а чувство ритма – 10%. Какова вероятность положительного тестирования?

64. Каждый из трех стрелков стреляет в мишень по одному разу, причем вероятность попадания 1 стрелка составляет 80%, второго – 70%, третьего – 60%. Найдите вероятность того, что в мишень попадет только второй стрелок.

65. В корзине лежат фрукты, среди которых 30% бананов и 60% яблок. Какова вероятность того, что выбранный наугад фрукт будет бананом или яблоком?

Участковый врач в течение недели принял 35 пациентов, из которых пяти пациентам был поставлен диагноз – язва желудка. Определите относительную частоту появления на приеме пациента с заболеванием желудка.

76. События А и В противоположные, если Р(А) = 0,4, тогда Р(В) = ...

D. верного ответа нет.

77. Если события А и В несовместимые и Р(А) = 0,2 а Р(В) = 0,05, то Р(А + В) =...

78. Если Р(В/А) = Р(В), то события А и В:

А. достоверные;

В. противоположные;

С. зависимые;

D. верного ответа нет

79. Условная вероятность события А при условии записывается в виде:

Колебания и волны

В уравнении гармонического колебания величина, стоящая под знаком косинуса, называется

А. амплитудой

В. циклической частотой

С. начальной фазой

E. смещением от положения равновесия

Имеют математическое выражение. Их свойства характеризует совокупность тригонометрических уравнений, сложность которых определяется сложностью самого колебательного процесса, свойствами системы и средой, в которой они происходят, т.е., внешними факторами, воздействующими на колебательный процесс.

Например, в механике гармоническое колебание представляет собой движение, которому свойственны:

Прямолинейный характер;

Неравномерность;

Перемещение физического тела, которое происходит по синусоидальной или косинусоидальной траектории, а зависимости от времени.

Исходя из данных свойств, можно привести уравнение гармонических колебаний, которое имеет вид:

x = A cos ωt или же вид x = A sin ωt, где х - значение координаты, А - значение амплитуды колебания, ω - коэффициент.

Такое уравнение гармонических колебаний является основным для всех гармонических колебаний, которые рассматриваются в кинематике и механике.

Показатель ωt, который в данной формуле стоит под знаком тригонометрической функции, именуют фазой, и она определяет местоположение колеблющейся материальной точки в данный конкретный момент времени при заданной амплитуде. При рассмотрении циклических колебаний данный показатель равен 2л, он показывает количество в пределах временного цикла и обозначается w. В этом случае уравнение гармонических колебаний содержит его как показатель величины циклической (круговой) частоты.

Рассматриваемое нами уравнение гармонических колебаний, как уже отмечалось, может принимать различные виды, в зависимости от ряда факторов. Например, вот такой вариант. Чтобы рассмотреть свободных гармонических колебаний, следует учитывать то, что им всем свойственно затухание. В различных это явление проявляется по-разному: остановка движущегося тела, прекращение излучения в электрических системах. Простейшим примером, показывающим уменьшение колебательного потенциала, выступает его преобразование в тепловую энергию.

Рассматриваемое уравнение имеет вид: d²s/dt² + 2β х ds/dt + ω²s = 0. В этой формуле: s - значение колеблющейся величины, которая характеризует свойства той или иной системы, β - константа, показывающая коэффициент затухания, ω - циклическая частота.

Использование такой формулы позволяет подходить к описанию колебательных процессов в линейных системах с единой точки зрения, а также производить конструирование и моделирование колебательных процессов на научно-экспериментальном уровне.

К примеру, известно, что на заключительном этапе своего проявления уже перестают быть гармоническими, то есть категории частоты и периода для них становятся просто бессмысленными и в формуле не отражаются.

Классическим способом исследования гармонических колебаний выступает В простейшем виде он представляет систему, которую описывает такое дифференциальное уравнение гармонических колебаний: ds/dt + ω²s = 0. Но многообразие колебательных процессов естественным образом приводит к тому, что существует большое количество осцилляторов. Перечислим их основные типы:

Пружинный осциллятор - обычный груз, обладающий некой массой m, который подвешен на упругой пружине. Он совершает гармонического типа, которые описываются формулой F = - kx.

Физический осциллятор (маятник) - твердое тело, совершающее колебательные движения вокруг статичной оси под воздействием определенной силы;

- (в природе практически не встречается). Он представляет собой идеальную модель системы, включающей колеблющееся физическое тело, обладающее определенной массой, которое подвешено на жесткой невесомой нити.

Основы теории Максвелла для электромагнитного поля

Вихревое электрическое поле

Из закона Фарадея ξ=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследствие этого появляется индукционный ток. Сле­довательно, возникновение э.д.с. электро­магнитной индукции возможно и в непод­вижном контуре, находящемся в перемен­ном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы - силы неэлектростатического про­исхождения (см. § 97). Поэтому возника­ет вопрос о природе сторонних сил в дан­ном случае.

Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с хи­мическими процессами в контуре; их воз­никновение также нельзя объяснить сила­ми Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнит­ное поле возбуждает в окружающем про­странстве электрическое поле, которое

и является причиной возникновения ин­дукционного тока в контуре. Согласно представлениям Максвелла, контур, в ко­тором появляется э.д.с., играет второсте­пенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле.

первое уравнение Максвелла утверждает, что изменения электрического поля порождают вихревое магнитное поле.

Второе уравнен ие Максвелла выражает закон электромагнитной индукции Фарадея: ЭДС в любом замкнутом контуре равна скорости изменения (т. е. производной по времени) магнитного потока. Но ЭДС равна касательной составляющей вектора напряженности электрического поля Е, помноженной на длину контура. Чтобы перейти к ротору, как и в первом уравнении Максвелла, достаточно разделить ЭДС на площадь контура, а последнюю устремить к нулю, т. е. взять маленький контур, охватывающий рассматриваемую точку пространства (рис. 9,в). Тогда в правой части уравнения будет уже не поток, а магнитная индукция, поскольку поток равен индукции, помноженной на площадь контура.
Итак, получаем: rotE = - dB/dt.
Таким образом, вихревое электрическое поле порождается изменениями магнитного, что и подано на рис. 9,в и представлено только что приведенной формулой.
Третье и четвертое уравнения Максвелла имеют дело с зарядами и порождаемыми ими полями. Они основаны на теореме Гаусса, утверждающей, что поток вектора электрической индукции через любую замкнутую поверхность равен заряду внутри этой поверхности.

На уравнениях Максвелла основана целая наука - электродинамика, позволяющая строгими математическими методами решить множество полезных практических задач. Можно рассчитать, например, поле излучения различных антенн как в свободном пространстве, так и вблизи поверхности Земли или около корпуса какого-либо летательного аппарата, например, самолета или ракеты. Электродинамика позволяет рассчитать конструкцию волноводов и объемных резонаторов - устройств, применяющихся на очень высоких частотах сантиметрового и миллиметрового диапазонов волн, где обычные линии передачи и колебательные контуры уже непригодны. Без электродинамики невозможно было бы развитие радиолокации, космической радиосвязи, антенной техники и многих других разделов современной радиотехники.

Ток смещения

ТОК СМЕЩЕ́НИЯ, величина, пропорциональная скорости изменения переменного электрического поля в диэлектрике или вакууме. Название «ток» связано с тем, что ток смещения, так же как и ток проводимости, порождает магнитное поле.

При построении теории электромагнитного поля Дж. К. Максвелл выдвинул гипотезу (впоследствии подтвержденную на опыте) о том, что магнитное поле создается не только движением зарядов (током проводимости, или просто током), но и любым изменением во времени электрического поля.

Понятие ток смещения введено Максвеллом для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем.

В соответствии с теорией Максвелла, в цепи переменного тока, содержащей конденсатор, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, какое создавал бы ток, (названный током смещения), если бы он протекал между обкладками конденсатора. Из этого определения следует, что J см = J (т. е., численные значения плотности тока проводимости и плотности тока смещения равны), и, следовательно, линии плотности тока проводимости внутри проводника непрерывно переходят в линии плотности тока смещения между обкладками конденсатора. Плотность тока смещения j см характеризует скорость изменения электрической индукции D во времени:

J см = + ?D/?t.

Ток смещения не выделяет джоулевой теплоты, его основное физическое свойство - способность создавать в окружающем пространстве магнитное поле.

Вихревое магнитное поле создается полным током, плотность которого j , равна сумме плотности тока проводимости и тока смещения?D/?t. Именно поэтому для величины?D/?t и было введено название ток.

Гармоническим осциллятором называется система, которая совершает колебания, описываемые выражением вида d 2 s/dt 2 + ω 0 2 s = 0 или

где две точки сверху означают двукратное дифференцирование по времени. Колебания гармонического осциллятора есть важный пример периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. В качестве примеров гармонического осциллятора могут быть пружинный, физический и математический маятники, колебательный контур (для токов и напряжений настолько малых, что можно было бы элементы контура считать линейными).

Гармонические колебания

Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения. Механическими колебанияминазывают движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f (t ). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис. 2.1.1).

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными . Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными Простейшим видом колебательного процесса являются простые гармонические колебания , которые описываются уравнением

Частота колебаний f показывает, сколько колебаний совершается за 1 с. Единица частоты – герц (Гц). Частота колебаний f связана с циклической частотой ω и периодом колебаний T соотношениями:

дает зависимость колеблющейся величины S от времени t ; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и j 0); например, положение и скорость колебательной системы при t = 0.

Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

Пусть совершаются два гармонических колебания одного направления и одинаковой частоты

Уравнение результирующего колебания будет иметь вид

Убедимся в этом, сложив уравнения системы (4.1)

Применив теорему косинусов суммы и сделав алгебраические преобразования:

Можно найти такие величины А и φ0 , чтобы удовлетворялись уравнения

Рассматривая (4.3) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:

Подставляя (4.3) в (4.2), получим:

Или окончательно, используя теорему косинусов суммы, имеем:

Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.

В зависимости от разности фаз (φ2-φ1):

1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний

Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.

Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Решим систему

Решение системы:

Результирующее колебание можно рассматривать как гармоническое с частотой ω, амплитуда А, которого изменяется по следующему периодическому закону:

Частота изменения А в два раза больше частоты изменения косинуса. Частота биений равна разности частот складываемых колебаний: ωб = Δω

Период биений:

Определение частоты тона (звука определенной высоты биений эталонным и измеряемым колебаниями - наиболее широко применяемый на метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.


Похожая информация.


Гармонические колебания - колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону. Уравнение гармонического колебания можно записать таким образом:
X(t) = A∙cos(ω t+φ )
или
X(t) = A∙sin(ω t+φ )

X - отклонение от положения равновесия в момент времени t
A - амплитуда колебания, размерность A совпадает с размерностью X
ω - циклическая частота, рад/c (радиан в секунду)
φ - начальная фаза, рад
t - время, с
T - период колебания, с
f - частота колебаний, Гц (Герц)
π - константа, примерно равная 3.14, 2π=6.28

Период колебаний, частота в герцах и циклическая частота связаны соотношениями.
ω=2πf , T=2π/ω , f=1/T , f=ω/2π
Чтобы запомнить эти соотношения нужно понять следующее.
Каждый из параметров ω, f, T однозначно определяет остальные. Для описания колебаний достаточно использовать какой-то один из этих параметров.

Период T — время одного колебания, удобно использовать для построения графиков колебаний.
Циклическая частота ω — используется для записи уравнений колебаний, позволяет проводить математические вычисления.
Частота f — количество колебаний в единицу времени, применяется повсеместно. В герцах мы измеряем частоту на которую настроены радиоприемники, а также диапазон работы мобильных телефонов. В герцах измеряется частота колебаний струн, при настройке музыкальных инструментов.

Выражение (ωt+φ) — называется фазой колебания, а величина φ — начальной фазой, так как она равна фазе колебания в момент времени t=0.

Функции синуса и косинуса описывают отношения сторон в прямоугольном треугольнике. Поэтому многие не понимают, каким образом эти функции связаны с гармоническими колебаниями. Эту связь демонстрирует равномерно вращающийся вектор. Проекция равномерно вращающегося вектора совершает гармонические колебания.
На картинке ниже, показан пример трех гармонических колебаний. Одинаковых по частоте, но разных по фазе и по амплитуде.

«Физика - 11 класс»

Ускорение - вторая производная координаты по времени.

Мгновенная скорость точки - это производная координаты точки по времени.
Ускорение точки - это производная ее скорости по времени, или вторая производная координаты по времени.
Поэтому уравнение движения маятника можно записать так:

где х" - вторая производная координаты по времени.

При свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.


Гармонические колебания

Из математики: вторые производные синуса и косинуса по их аргументу пропорциональны самим функциям, взятым с противоположным знаком, и никакие другие функции таким свойством не обладают.
Поэтому:
Координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса.


Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями .


Амплитуда колебаний

Амплитудой гармонических колебаний называется модуль наибольшего смещения тела от положения равновесия.

Амплитуда определяется начальными условиями, а точнее энергией, сообщаемой телу.

График зависимости координаты тела от времени представляет собой косинусоиду.

х = x m cos ω 0 t

Тогда уравнение движения, описывающее свободные колебания маятника:

Период и частота гармонических колебаний.

При колебаниях движения тела периодически повторяются.
Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний .

Частота колебаний - это число колебаний в единицу времени.
Если одно колебание совершается за время Т то число колебаний за секунду

В Международной системе единиц (СИ) единица частоты называется герцем (Гц) в честь немецкого физика Г. Герца.

Число колебаний за 2π с равно:

Величина ω 0 - это циклическая (или круговая) частота колебаний.
Через промежуток времени, равный одному периоду, колебания повторяются.

Частоту свободных колебаний называют собственной частотой колебательной системы.
Часто для краткости циклическую частоту называют просто частотой.


Зависимость частоты и периода свободных колебаний от свойств системы.

1. для пружинного маятника

Собственная частота колебаний пружинного маятника равна:

Она тем больше, чем больше жесткость пружины k, и тем меньше, чем больше масса тела m.
Жесткая пружина сообщает телу большее ускорение, быстрее меняет скорость тела, а чем тело массивнее, тем медленнее оно изменяет скорость под влиянием силы.

Период колебаний равен:

Период колебаний пружинного маятника не зависит от амплитуды колебаний.


2. для нитяного маятника

Собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Период же этих колебаний равен

Период колебаний нитяного маятника при малых углах отклонения не зависит от амплитуды колебаний.

Период колебаний возрастает с увеличением длины маятника. От массы маятника он не зависит.

Чем меньше g, тем больше период колебаний маятника и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут за сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета (высота 200 м). И это только за счет уменьшения ускорения свободного падения с высотой.

Похожие статьи

  • Сбор необходимых документов

    2017 год – юбилейный для одного из старейших и уважаемых образовательных учреждений среднего профессионального образования нашего города – Дивногорского медицинского техникума (ДМТ). 50 лет назад, в 1967 году, техникум (тогда еще училище)...

  • Бально-рейтинговая система

    За столетия истории и культуры человечества карты эволюционировали из простейших игр типа дурака в игры, требующие составления индивидуальных колод и сложных многоходовых комбинаций. Собственно, именно о них и пойдет речь – о коллекционных...

  • Поток индукции магнитного поля

    > Изменение магнитного потока создает электрическое поле Рассмотрите возникновение электрического поля при изменении магнитного потока : закон электромагнитной индукции Фарадея, уравнение Максвелла, теорема Стокса. При перемене магнитного...

  • Применение теоремы Гаусса для расчета электрических полей Потенциал теорема гаусса

    Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности...

  • Карта сознания дэвида хокинса Результаты исследований Хокинса

    Дэвид Хокинс Путь просветления: 365 ежедневных размышлений Какое суждение лучше всего выражает жизнь, целиком посвященную духовному совершенствованию?Gloria in Excelsis Deo! «Слава в Вышних Богу!» КАЖДЫЙ ШАГ НА ПУТИ К ПРОСВЕТЛЕНИЮ не...

  • Грядет зачистка нелояльных блогеров

    В среду утром популярный сервис интернет-дневников "Живой журнал" вновь . Представители управляющей компании ресурса SUP отказались комментировать ситуацию, сказав только, что речь, возможно, идет о последствиях кибератак. В данный момент...