Похідна робота складної функції. Похідна робота двох функцій. Геометричний та фізичний зміст похідної

З правочні матеріали на тему «похідна». Основний шкільний рівень.
Теоретичні відомості для учнів, викладачів та репетиторів з математики. На допомогу проведення занять.

Визначення:похідної функції у точці називається межа відношення збільшення функції до збільшення змінної, тобто

Таблиця похідних основних математичних функцій:

Правила обчислення похідних

Похідна сумадвох будь-яких виразів дорівнює сумі похідних цих виразів (похідна суми дорівнює сумі похідних)

Похідна різницідвох будь-яких виразів дорівнює різниці похідних цих доданків (похідна різниці дорівнює різниці похідних).

Похідна від творудвох множників дорівнює добутку похідної першого множника на другий плюс добуток першого множника на похідну другого (сума взятих почергово похідних від множників).
Коментар репетитора з математики:коли я короткими фразаминагадую учневі про правило обчислення похідної від твору, я говорю так: похідна першого множника на другий плюс обмін штрихами!


Похідна від приватногодвох виразів дорівнює приватній різниці по черзі взятих похідних від множників і квадрата знаменника.

Похідна від числа на функцію. Щоб знайти похідну від твору числа на буквене вираз (на функцію) потрібно помножити це число на похідну цього виразу.

Похідна складної функції:

Для обчислення похідної складної функції необхідно знайти похідну зовнішньої функції та помножити її на похідну внутрішньої функції.

Ваші коментарі та відгуки до сторінки з похідними:
Олександр С.
Дуже потрібна була таблиця. В інтернеті одна із самих. За пояснення та правила теж велике спасибі. Хоча б за одним прикладом ще до них і взагалі було б добре було. Ще раз виличезне Дякую.

Колпаков О.М, репетитор з математики:добре, постараюся найближчим часом доповнити сторінку прикладами.

Віртуальний математичний довідник.
Ковпаков Олександр Миколайович, репетитор з математики.

Якщо слідувати визначенню, то похідна функції у точці — це межа відношення збільшення функції Δ yдо збільшення аргументу Δ x:

Начебто все зрозуміло. Але спробуйте порахувати за цією формулою, скажімо, похідну функції f(x) = x 2 + (2x+ 3) · e x· sin x. Якщо все робити за визначенням, то через кілька сторінок обчислень ви просто заснете. Тому існують простіші та ефективніші способи.

Спочатку зауважимо, що з усього різноманіття функцій можна назвати звані елементарні функції. Це щодо прості вирази, похідні яких давно обчислені та занесені до таблиці. Такі функції досить просто запам'ятати — разом із їх похідними.

Похідні елементарних функцій

Елементарні функції – це все, що наведено нижче. Похідні цих функцій треба знати напам'ять. Тим більше, що завчити їх зовсім нескладно — на те вони й елементарні.

Отже, похідні елементарних функцій:

Назва Функція Похідна
Константа f(x) = C, CR 0 (так-так, нуль!)
Ступінь із раціональним показником f(x) = x n n · x n − 1
Сінус f(x) = sin x cos x
Косінус f(x) = cos x − sin x(мінус синус)
Тангенс f(x) = tg x 1/cos 2 x
Котангенс f(x) = ctg x − 1/sin 2 x
Натуральний логарифм f(x) = ln x 1/x
Довільний логарифм f(x) = log a x 1/(x· ln a)
Показова функція f(x) = e x e x(нічого не змінилось)

Якщо елементарну функцію помножити на довільну постійну, то похідна нової функції також легко вважається:

(C · f)’ = C · f ’.

Загалом константи можна виносити за знак похідної. Наприклад:

(2x 3)' = 2 · ( x 3)' = 2 · 3 x 2 = 6x 2 .

Очевидно, елементарні функції можна складати одна з одною, множити, ділити і багато іншого. Так з'являться нові функції, не особливо елементарні, але теж диференційовані за певними правилами. Ці правила розглянуті нижче.

Похідна суми та різниці

Нехай дані функції f(x) та g(x), похідні яких нам відомі. Наприклад, можна взяти елементарні функції, розглянуті вище. Тоді можна знайти похідну суми та різниці цих функцій:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Отже, похідна суми (різниці) двох функцій дорівнює сумі (різниці) похідних. Доданків може бути більше. Наприклад, ( f + g + h)’ = f ’ + g ’ + h ’.

Строго кажучи, в алгебрі немає поняття «віднімання». Є поняття «негативний елемент». Тому різниця fgможна переписати як суму f+ (−1) · gі тоді залишиться лише одна формула — похідна суми.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Функція f(x) - це сума двох елементарних функцій, тому:

f ’(x) = (x 2 + sin x)’ = (x 2)' + (sin x)’ = 2x+ cos x;

Аналогічно міркуємо для функції g(x). Тільки там уже три доданки (з погляду алгебри):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Відповідь:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Похідна робота

Математика - наука логічна, тому багато хто вважає, що якщо похідна суми дорівнює сумі похідних, то похідна твори strike"> дорівнює твору похідних. А ось фіг вам! Похідна твори вважається зовсім за іншою формулою. А саме:

(f · g) ’ = f ’ · g + f · g

Формула проста, але її часто забувають. І не лише школярі, а й студенти. Результат – неправильно вирішені завдання.

Завдання. Знайти похідні функції: f(x) = x 3 · cos x; g(x) = (x 2 + 7x− 7) · e x .

Функція f(x) є твір двох елементарних функцій, тому все просто:

f ’(x) = (x 3 · cos x)’ = (x 3)' · cos x + x 3 · (cos x)’ = 3x 2 · cos x + x 3 · (− sin x) = x 2 · (3cos xx· sin x)

У функції g(x) перший множник трохи складніше, але загальна схема від цього не змінюється. Очевидно, перший множник функції g(x) є багаточлен, і його похідна - це похідна суми. Маємо:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)' · e x + (x 2 + 7x− 7) · ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Відповідь:
f ’(x) = x 2 · (3cos xx· sin x);
g ’(x) = x(x+ 9) · e x .

Зверніть увагу, що на останньому етапі похідна розкладається на множники. Формально цього робити не потрібно, проте більшість похідних обчислюються не власними силами, а щоб досліджувати функцію. А значить, далі похідна прирівнюватиметься до нуля, з'ясовуватимуться її знаки і так далі. Для такої справи краще мати вираз, розкладений на множники.

Якщо є дві функції f(x) та g(x), причому g(x) ≠ 0 на цікавій для нас безлічі, можна визначити нову функцію h(x) = f(x)/g(x). Для такої функції також можна знайти похідну:

Неслабо, так? Звідки взявся мінус? Чому g 2? А ось так! Це одна з самих складних формул- Без пляшки не розберешся. Тому краще вивчати її на конкретні приклади.

Завдання. Знайти похідні функції:

У чисельнику та знаменнику кожного дробу стоять елементарні функції, тому все, що нам потрібно – це формула похідної частки:


За традицією, розкладемо чисельник на множники — це значно спростить відповідь:

Складна функція - це не обов'язково формула завдовжки півкілометра. Наприклад, достатньо взяти функцію f(x) = sin xта замінити змінну x, скажімо, на x 2 + ln x. Вийде f(x) = sin ( x 2 + ln x) - це і є складна функція. Вона теж має похідну, проте знайти її за правилами, розглянутими вище, не вийде.

Як бути? У таких випадках допомагає заміна змінної та формула похідної складної функції:

f ’(x) = f ’(t) · t', якщо xзамінюється на t(x).

Як правило, з розумінням цієї формули справа ще більш сумно, ніж з похідною приватного. Тому її також краще пояснити на конкретних прикладах, з докладним описом кожного кроку.

Завдання. Знайти похідні функції: f(x) = e 2x + 3 ; g(x) = sin ( x 2 + ln x)

Зауважимо, що якщо у функції f(x) замість виразу 2 x+ 3 буде просто x, то вийде елементарна функція f(x) = e x. Тому робимо заміну: нехай 2 x + 3 = t, f(x) = f(t) = e t. Шукаємо похідну складної функції за формулою:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

А тепер – увага! Виконуємо зворотну заміну: t = 2x+ 3. Отримаємо:

f ’(x) = e t · t ’ = e 2x+ 3 · (2 x + 3)’ = e 2x+ 3 · 2 = 2 · e 2x + 3

Тепер розберемося із функцією g(x). Очевидно, треба замінити x 2 + ln x = t. Маємо:

g ’(x) = g ’(t) · t' = (sin t)’ · t' = cos t · t

Зворотна заміна: t = x 2 + ln x. Тоді:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

От і все! Як очевидно з останнього висловлювання, все завдання звелося до обчислення похідної суми.

Відповідь:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) · cos ( x 2 + ln x).

Дуже часто на своїх уроках замість терміну "похідна" я використовую слово "штрих". Наприклад, штрих від суми дорівнює сумі штрихів. Так зрозуміліше? Ну от і добре.

Таким чином, обчислення похідної зводиться до позбавлення цих самих штрихів за правилами, розглянутими вище. Як останній приклад повернемося до похідного ступеня з раціональним показником:

(x n)’ = n · x n − 1

Мало хто знає, що в ролі nцілком може виступати дрібне число. Наприклад, корінь - це x 0,5. А що, коли під корінням стоятиме щось наворочене? Знову вийде складна функція – такі конструкції люблять давати на контрольні роботита екзаменах.

Завдання. Знайти похідну функції:

Для початку перепишемо корінь у вигляді ступеня з раціональним показником:

f(x) = (x 2 + 8x − 7) 0,5 .

Тепер робимо заміну: нехай x 2 + 8x − 7 = t. Знаходимо похідну за формулою:

f ’(x) = f ’(t) · t ’ = (t 0,5)' · t' = 0,5 · t−0,5 · t ’.

Робимо зворотну заміну: t = x 2 + 8x− 7. Маємо:

f ’(x) = 0,5 · ( x 2 + 8x− 7) −0,5 · ( x 2 + 8x− 7)' = 0,5 · (2 x+ 8) · ( x 2 + 8x − 7) −0,5 .

Нарешті, повертаємось до коріння:

Запам'ятати дуже просто.

Ну і не будемо далеко ходити, одразу ж розглянемо зворотну функцію. Яка функція є зворотною для показової функції? Логарифм:

У нашому випадку основою є число:

Такий логарифм (тобто логарифм із основою) називається «натуральним», і для нього використовуємо особливу позначку: замість пишемо.

Чому дорівнює? Звичайно ж, .

Похідна від натурального логарифму теж дуже проста:

Приклади:

  1. Знайди похідну функцію.
  2. Чому дорівнює похідна функції?

Відповіді: Експонента та натуральний логарифм – функції унікально прості з погляду похідної. Показові та логарифмічні функції з будь-якою іншою основою будуть мати іншу похідну, яку ми з тобою розберемо пізніше, після того, як ми пройдемо правила диференціювання.

Правила диференціювання

Правила чого? Знову новий термін, знову?!

Диференціювання- Це процес знаходження похідної.

Тільки і всього. А як ще назвати цей процес одним словом? Не производнование ж... Диференціалом математики називають те саме збільшення функції при. Походить цей термін від латинського differentia - різниця. Ось.

При виведенні всіх цих правил використовуватимемо дві функції, наприклад, в. Нам знадобляться також формули їх прирощень:

Усього є 5 правил.

Константа виноситься за знак похідної.

Якщо – якесь постійне число (константа), тоді.

Зрозуміло, це правило працює й у різниці: .

Доведемо. Нехай, чи простіше.

приклади.

Знайдіть похідні функції:

  1. у точці;
  2. у точці;
  3. у точці;
  4. у точці.

Рішення:

  1. (Похідна однакова у всіх точках, так як це лінійна функція, Пам'ятаєш?);

Похідна робота

Тут все аналогічно: введемо нову функцію і знайдемо її збільшення:

Похідна:

Приклади:

  1. Знайдіть похідні функцій та;
  2. Знайдіть похідну функцію в точці.

Рішення:

Похідна показової функції

Тепер твоїх знань достатньо, щоб навчитися знаходити похідну будь-якої показової функції, а не лише експоненти (не забув ще, що це таке?).

Отже, де – це якесь число.

Ми вже знаємо похідну функцію, тому давай спробуємо привести нашу функцію до нової основи:

Для цього скористаємося простим правилом: . Тоді:

Ну ось, вийшло. Тепер спробуй знайти похідну, і не забудь, що ця функція – складна.

Вийшло?

Ось, перевір себе:

Формула вийшла дуже схожа на похідну експоненти: як було, так і залишилося, з'явився лише множник, який є просто числом, але не змінною.

Приклади:
Знайди похідні функції:

Відповіді:

Це просто число, яке неможливо порахувати без калькулятора, тобто ніяк не записати до більш простому вигляді. Тому у відповіді його у такому вигляді і залишаємо.

    Зауважимо, що тут приватне двох функцій, тому застосуємо відповідне правило диференціювання:

    У цьому прикладі добуток двох функцій:

Похідна логарифмічна функція

Тут аналогічно: ти вже знаєш похідну від натурального логарифму:

Тому, щоб знайти довільну від логарифму з іншою основою, наприклад:

Потрібно привести цей логарифм до основи. А як змінити основу логарифму? Сподіваюся, ти пам'ятаєш цю формулу:

Тільки тепер замість писатимемо:

У знаменнику вийшла просто константа (постійне число без змінної). Похідна виходить дуже просто:

Похідні показової та логарифмічні функціїмайже не зустрічаються в ЄДІ, але не зайве знати їх.

Похідна складна функція.

Що таке "складна функція"? Ні, це не логарифм і не арктангенс. Дані функції можуть бути складні для розуміння (хоча, якщо логарифм тобі здається складним, прочитай тему «Логарифми» і все пройде), але з погляду математики слово «складна» не означає «важка».

Уяви собі маленький конвеєр: сидять дві людини і роблять якісь дії з якимись предметами. Наприклад, перший загортає шоколадку в обгортку, а другий обв'язує її стрічкою. Виходить такий складовий об'єкт: шоколадка, обгорнена та обв'язана стрічкою. Щоб з'їсти шоколадку, тобі потрібно зробити зворотні дії у зворотному порядку.

Давай створимо подібний математичний конвеєр: спочатку знаходитимемо косинус числа, а потім отримане число зводитимемо в квадрат. Отже, нам дають число (шоколадка), я знаходжу його косинус (обгортка), а ти потім зводиш те, що в мене вийшло, у квадрат (обв'язуєш стрічкою). Що вийшло? функція. Це і є приклад складної функції: коли для знаходження її значення ми робимо першу дію безпосередньо зі змінною, а потім ще другу дію з тим, що вийшло в результаті першого.

Іншими словами, складна функція – це функція, аргументом якої є інша функція: .

Для прикладу, .

Ми цілком можемо робити ті ж дії і в зворотному порядку: спочатку ти зводиш у квадрат, а потім шукаю косинус отриманого числа: . Нескладно здогадатися, що результат майже завжди буде різним. Важлива особливість складних функцій: зміна порядку дій функція змінюється.

Другий приклад: (те саме). .

Дію, яку робимо останнім, називатимемо "зовнішньої" функцією, а дія, що чиниться першим - відповідно «внутрішньою» функцією(це неформальні назви, я їх вживаю лише для того, щоб пояснити матеріал простою мовою).

Спробуй визначити сам, яка функція є зовнішньою, а яка внутрішньою:

Відповіді:Поділ внутрішньої та зовнішньої функцій дуже схожий заміну змінних: наприклад, у функції

  1. Першим виконуватимемо яку дію? Спершу порахуємо синус, а потім зведемо в куб. Отже, внутрішня функція, а зовнішня.
    А вихідна функція є їх композицією: .
  2. Внутрішня: ; зовнішня: .
    Перевірка: .
  3. Внутрішня: ; зовнішня: .
    Перевірка: .
  4. Внутрішня: ; зовнішня: .
    Перевірка: .
  5. Внутрішня: ; зовнішня: .
    Перевірка: .

виконуємо заміну змінних та отримуємо функцію.

Ну що ж, тепер витягуватимемо нашу шоколадку - шукати похідну. Порядок дій завжди зворотний: спочатку шукаємо похідну зовнішньої функції, потім множимо результат на похідну внутрішньої функції. Стосовно вихідного прикладу це так:

Інший приклад:

Отже, сформулюємо, нарешті, офіційне правило:

Алгоритм знаходження похідної складної функції:

Начебто все просто, так?

Перевіримо на прикладах:

Рішення:

1) Внутрішня: ;

Зовнішня: ;

2) Внутрішня: ;

(Тільки не здумай тепер скоротити на! З-під косинуса нічого не виноситься, пам'ятаєш?)

3) Внутрішня: ;

Зовнішня: ;

Відразу видно, що тут трирівнева складна функція: адже - це вже сама по собі складна функція, а з неї витягуємо корінь, тобто виконуємо третю дію (шоколадку в обгортці і з стрічкою кладемо в портфель). Але лякатися немає причин: все одно «розпаковувати» цю функцію будемо в тому ж порядку, що і зазвичай: з кінця.

Тобто спершу продиференціюємо корінь, потім косинус, і лише потім вираз у дужках. А потім все це перемножимо.

У разі зручно пронумерувати дії. Тобто уявімо, що нам відомий. У якому порядку робитимемо дії, щоб обчислити значення цього виразу? Розберемо з прикладу:

Чим пізніше відбувається дія, тим більше «зовнішньої» буде відповідна функція. Послідовність дій - як і раніше:

Тут вкладеність взагалі 4-рівнева. Давайте визначимо порядок дій.

1. Підкорене вираз. .

2. Корінь. .

3. Синус. .

4. Квадрат. .

5. Збираємо все до купи:

ВИРОБНИЧА. КОРОТКО ПРО ГОЛОВНЕ

Похідна функції- Відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу:

Базові похідні:

Правила диференціювання:

Константа виноситься за знак похідної:

Похідна сума:

Похідна робота:

Похідна приватна:

Похідна складної функції:

Алгоритм знаходження похідної від складної функції:

  1. Визначаємо "внутрішню" функцію, знаходимо її похідну.
  2. Визначаємо "зовнішню" функцію, знаходимо її похідну.
  3. Помножуємо результати першого та другого пунктів.

Що таке похідна функція - це основне математичне поняття, що знаходиться на одному рівні з інтегралами при аналізі. Ця функціяу певній точці дає характеристику швидкості змін функції у цій точці.
Такі поняття як диференціювання та інтегрування, перше розшифровується як дію пошуку похідної, друге навпаки, відновлює функцію відштовхуючись від цієї похідної.
Обчисленням похідної приділяється важлива частина в диференціальних розрахунках.
Для наочного прикладу зобразимо похідну на координатній площині.

у функції у=f(х) фіксуємо точки М у якій (х0; f(X0)) і N f (x0+?x) до кожної абсциси є збільшення у вигляді?x. Прирістом називається процес коли змінюється абсцис, тоді змінюється і ордината. Позначається як?
Знайдемо тангенс кута в трикутнику MPN, використовуючи для цього точки М і N.

tg? = NP/MP = ?у/?x.

При ?x, що йде до 0. Перетинає МN все ближче до дотичної МТ і кут? буде? Отже, tg? максимальне значення для tg?.

tg? = lim від? x-0 tg? = lim від? x-0? у /? x

Таблиця похідних

Якщо говорити про формулювання кожної формули похідних. Таблиця буде простіше запам'ятовуватися.
1) Похідна від постійного значення дорівнює 0.
2) Х зі штрихом дорівнює одиниці.
3) Якщо є постійний множник, просто виносимо його за похідну.
4) Щоб знайти похідний ступінь, потрібно показник даного ступеня помножити на ступінь з такою самою основою, яка має показник на 1 менше.
5) Пошук кореня дорівнює одному, діленому 2 цих кореня.
6) Похідна одного, поділеного на Х дорівнює одному розділеному на Х зведений у квадрат, зі знаком мінус.
7) П синус дорівнює косинусу
8) П косинус дорівнює синусу зі знаком мінус.
9) П тангенс дорівнює одному, поділеному на косинус у квадраті.
10) П котангенс дорівнює одному зі знаком мінус, поділена на синус у квадраті.

У диференціюванні також існують правила, які також простіше вивчити промовляючи їх у слух.

1) Дуже просто, п. доданків дорівнює їх сумі.
2) Похідна у множенні дорівнює множенню першого значення друге, додаючи себе множення другого значення перше.
3) Похідна у розподілі дорівнює множенню першого значення друге, забираючи від себе множення другого значення перше. Дроб поділу на друге значення у квадраті.
4) Формулювання є окремим випадком третьої формули.

Операція відшукання похідної називається диференціюванням.

У результаті розв'язання задач про відшукання похідних у найпростіших (і не дуже простих) функцій визначення похідної як межі відношення збільшення до збільшення аргументу з'явилися таблиця похідних і точно визначені правила диференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функцій знаходимо у таблиці похідних, а формули похідних твору, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), що є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинуса
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна твори
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна твори двох функцій дорівнює сумі творів кожної з цих функцій похідну інший.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори кількох диференційованих функцій дорівнює сумі творів похідної кожного з співмножників попри всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твору і частки у реальних завданнях завжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладівна ці похідні – у статті"Виробничі твори та приватні функції".

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У разі доданку її похідна дорівнює нулю, а разі постійного множника вона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапі вивчення похідних, але в міру вирішення вже кількох одно-двоскладових прикладів середній студент цієї помилки вже не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в котрому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка - механічне рішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття "Похідна суми дробів зі ступенями та корінням".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо такі значення похідних:

Підставляємо знайдені похідні у суму творів та отримуємо необхідну умовою завдання похідну всієї функції:

А перевірити розв'язання задачі на похідну можна на .

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли у прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, в яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням" .

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричних функцій, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій" .

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значення похідної квадратного кореня отримуємо:

Перевірити рішення задачі на похідну можна на калькуляторі похідних онлайн .

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили і застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .

Схожі статті

  • Китайська мова — тексти для початківців

    Тема: КитайIt has manycharacteristics, which single it out out of thether countries. Першим є найбільш populated country і because of this reason is the big number of the China, who move to other countries and settle there....

  • Додаткові пропозиції в німецькій мові

    Щоб позначається у німецькій мові подвійно. Порівняйте: Er geht nach Deutschland, um Deutsch zu lernen. - Він їде до Німеччини, щоб навчати німецьку. Їх schenke ihm ein deutsches Buch, damit er deutsche Literatur im Original liest. - Я дарую...

  • Підпорядницькі спілки у німецькій мові Damit та um zu у німецькій мові

    Про німецьку мову вже чимало студентів встигли поламати ручки, олівці, клавіатури, айфони та ноутбуки. Комусь він здається неймовірно складним, комусь досить простим. Одне залишається ясним - у німецькій мові є речі,...

  • З чого розпочати викладання російської мови

    Ви вчите російську вже не перший місяць, але все ще не можете сказати ні слова, а про перегляд фільмів і мови не може йти? Напевно, ви просто неправильно навчаєте російську мову. Давайте поговоримо про прості, але ефективні правила, які...

  • Миттєва швидкість автомобіля

    Скочування тіла по похилій площині (рис. 2); Мал. 2. Скатування тіла по похилій площині () Вільне падіння (рис. 3). Всі ці три види руху є рівномірними, тобто у них змінюється швидкість. На цьому уроці ми...

  • (Може є якась універсальна формула?

    Одиничний вектор - це вектор, абсолютна величина (модуль) якого дорівнює одиниці. Для позначення одиничного вектора ми будемо використовувати нижній індекс е. Так, якщо заданий вектор а, то його одиничним вектором буде вектор е.